1 Functional Integral Representations

1.1 Path integral in quantum mechanics
1.1.1 Basic of quantum dynamics

Let ¢ (z,t) be a time-dependent state function of quantum system satisfy
Schrodinger equation

i0pp(x,t) = H(z,t) (1.1)

where H = 2’% + V(x) is a system Hamiltonian. There will be a unitary
time-operator U(t,0) with the action

¢($7t) = U(EOW(%O) (12>

We can observe that the unitary operator itself satisfy the Schrodinger equa-
tion (1.1)

i0,U(t,0) = HU(t,0) — U(t,0) = e ! (1.3)

with the fact that U(0,0) =1 and H # H(t).

1.1.2 Feynman propagator

Using the normalization property of the state function [ dazy*(x, )y (z,t) =
1, one can simple write the identity

W(b,T) = / dat(b, T)*(a, 0)1(a, 0) = / dak (b, a: T)(a,0)  (1.4)

Mathematically K (b, a;T') is known in the name of integral kernel, but physi-
cists is known in the name of Feynman propagator, according to R. Feynman
who first wrote this relation in his PhD thesis. The quantum meaning of
Feynman propagator is the probability amplitude finding a particle at a at
the initial time 0 and then finding it again at b at later time T > 0.

We can get more detail analysis of Feynman propagator, with the help of
Dirac bracket notation, as in the following

K(bya:T)=1(b,T)"(a,0) =< blty(T) >< ¥(0)|a >
=< b|U(T,0)]1(0) >< ¢(0)|a >=< b|U(T,0)|a > (1.5)
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This bring us to be able to do the calculation of the Feynman propagator.
First we use the semi-group property of the unitary operator such that when
we break the time interval [T, 0] into N of small duration € as

T =Ne—t,=ne, withtg=0, ty=T (1.6)

The we can write

U(T,0) = y(e)U(i)...U(ez, Ule) = e (1.7)

From (1.5) we will have

K(b,a:T)=<b|U(e)U(e)...U(¢€) |a >

Nf;errms
= H7]:f:—11 |:/ dl‘n:| < J)N|U(6)|$N_1 >< I'N_1|U(6)|$N_2 > ...
o < xp|U(€)|xn—1 > ... < 2a|U(€)|z1 >< 21|U(€)|0 > (1.8)

K(xN,xN71;€>K(‘TN71,xN72; 6)

= IVt { / dx,

K (2, s €). K (29, 15 €) K (21, 205 €) (1.9)
where we have used the expression
K (2, Tn_1;€) =< zple”H |z, 1 > . (1.10)
In the limit of N — oo, or ¢ — 0, we will have

K (2, 2p_1;€) =< xp|e |2, >~< xn|e_ip2/2me_iev(”)|xn_1 >

» o,
~e 1€V (zn) < $n|€ iep /2m|xn_1 >

—3 —jen2
~e “V(x")/dpn < Tple PP Dy > < ol ey >
~ ¢tV (@n) /dpne /2 < g D >< Pty >

~ e—iEV(:vn) %e—isp%/Qm—&-ipn (Tn—Tn—1)
27

m \1/2 me [T, — Tp_1 2 )
_<ﬂ> exp( 5 ( - ) —zeV(xn)> (1.11)

2




after we have used the fact that < x|p >= e®*/y/27, and we have applied
the Gaussian integration over [[ dp,. Insertion into (1.9), we get

N/1
K(b,a;T) = lim TN} {/ dxn} (i>

N—00 2mie
X exp (iezg (@) - V(:cn)} (1.12)
— K(b,a;T) = /D[x]eism, Slx] = /T dtL (1.13)
L= %ma’:Q —V(x) (1.14)

It is known as Feynman path integral formula.

1.1.3 The generating function

According to its quantum meaning, we can do the quantum expectation value
through the generating function which is written in term of path integral as

2] = / Dlz]eSlel+i [ diz()j) (1.15)

The we can have

B [ Dlz]x(t)e*?! 1 L 0z[j]

< T >= f’D[:L-]eiS[ac] - 2[]]( )a](t) o (1'16>
1 L 0 .

< 16)>= st (Cg5) | (117

1.2 Gaussian integrals

The method we have used is Gaussian integration, in this section we come
to summarize of the integration.

1.2.1 Single-variable integration

—+00
I(a,b) = / dape™oe /20 \/E/ (1.18)
oo a
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1.2.2 Multi-variable integration

Mad, 0) = 1Y, | [ dn] e imtanten

N/2
A Y (1.19)

V ij\;ﬂi

Define matrices A = {a;0;;}, b = {b;}, b = {x;}, we can rewrite (1.19) in
matrix form as

I(A,B) = / dX e s Awthe — aN2 et A]71/2ezb AT (1.20)
(R | A {/dw,} = /D[a:] (1.21)
[ Plale it — derfa e 1)

1.3 Functional integral of bosonic field

Let ¢(z,t) be a bosonic field with the Lagrangian Lo = 3((0¢)* — m?¢?),
we can extend the path integral to be the functional integral by doing the
following substitutions

x(t) = é(x,t) (1.23)
A Dl t)] = [ Dlgiesie s wseose (1)

Sold] = / I / dtLo(6,0,8)  (1.25)

From now we come to use a shorthand notations of (z,t) = z of dim-4, and

/ d'zp(x)J (x) = (¢,]) (1.26)
Sol¢] = /d4x£ = /d%%(ad) -0 — m2¢2)
= —%/d%cb((‘y +m?)¢ = —%(gb, G5lo) (1.27)



where we have ignore the total derivative term, and Gy is the differential
operator appears in the free field equation of motion. We can apply the

Gaussian integral to evaluate Zy[J] and results to

/D = lim 7T_N/2H7]:7:1 |:/ d¢n:| 5 ¢n = ¢<xn)
N—)oo
/'De L(6.Gy o) +i(9,)) = det[Gy ]1/262(JG0J)

(J,GoJ) /d4 /d4$'J VGo(x,2")J(z")
= (02 +m*)oW(x —2)

1.4 Correlation functions and Wick’s theorem

By definition of the N-points correlation function

Cley, . on) = (0|T[¢($1)-~¢($N)]|0>
J DIgld(1)...o(xy)e™l
fD e—Sold]
1 )N oNZy[J]

Zo1 Y T 0d @) |

Feynman propagator
Dr(x,y) = (0[T[¢(x)¢(y)]|0) = iGo(z,y)
Wick’s theorem can be derived easily as

s ) = 0, N — odd
Ly N Yop i ;Dp(zpi, xpj), N —even

For example

C(1,2,3,4) = Dp(1,2)Dp(3,4) + Dp(1,3)Dp(2,4)
+Dp(1,4)Dp(2,3)

(1.28)
(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)



1.5 Field interaction and perturbative expansion

Insertion of interaction Lagrangian
Lr=-V(}) (1.37)
The generating functional (1.24) becomes
Z[J] _ /D[¢]6iso[¢]—ifd4xV(¢>)+ifd4x¢>(z)J(:p) (1.38)
_ e—ifd4wv(—i8/8J) /D[gﬂei&)[(b]—l—ifd4;v¢(ac)J(x)
_ e—ifd4zv(—i8/8J)ZO[J] (1.39)

- Z ()" /d4a;1.../d4an(—i8J(xl))---V(_iaJ(xn))ZO[J] (1.40)

n!
n=0

We do have
7Ol = Z[J) (1.41)
ZOL] = —i / d* 2"V (~i05(ar)) Zo|J] (1.42)

In case of ¢*-interaction

V(g) = A (x) = ZW[J] = —iA / d*a’ (—z' 5 J?x,)> ZolJ)  (1.43)
— Dg)(x,y) = —i\Dp(z,y) /d4x’DF(:U’,x’)DF(x',x’)

i) / dida' Dp(x,2') Dl 2\ Dp(esy)  (1.44)

0. a

Figure 1.1: First order field propagator in ¢*-interaction.



This shows that Z[J] generate both connected and disconnected Feynman
propagators. Let us define the functional

iW[J] = Z[J] — Z[J] = "V (1.45)
OW[J] 1 0Z[J]
S~z (9
. WL 1 9zl 1 9z[J]az]J] (1.47)
0J(x)0J(y)  Z[J)0J(x)0J(y)  Z2[J]0J(x)dJ(y) '

So that
W]
9T (y) = (9(z)d(y)) — (9(2))(d(y)) (1.48)

= (o(z)o(y))c (1.49)

It generates the connected correlation function, i.e., by definition

(P(z1)..d(zn))c = ((x1)...0(2N))
— Y (Miglan)..d(zu)), k <m) (1.50)

J=0

Part.(1..k)
From this fact one can write
~ 1
WlJ] = EJ(xl)J(xn)W(xl)qb(xn))C (1.51)
n=1 """

This functional can be used to determine semi-classical approximation in
quantum field theory calculation developed by Schwinger. We will look at
this later.

1.6 Functional integral of fermionic field
1.6.1 Grassmann variables

Let {0;} be a set of n-Grassmann variables, satisfy the Grassmann algebra

Let f(0) be a function of single Grassmann variable theta, its form form will
be

FO)=a+b0, abeR (1.53)
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From this expression, we can determine the Grassmann calculus, from regular
differentiation, we have

d d
@f(é) = @(a—i—bG) =b (1.54)
From Berezin's definition /d@ =0, /d% =1 (1.55)

N /d&f(&) _ /de(a +00) = b (1.56)
The Grassmann integral gives a similar result to the differentiation, which

look curios. Let us determine the Gaussian function of 2n-Grassmann vari-
ables

— 11, (1 +0;) Aij0j> (1.57)

Generalize with the linear terms

i i
— 91 — Q,/L = ‘91 + Z(A_l)ijbj also for Q_Z (160)
J

— I[Ab] =11, [ / de;dég] G[A, b] = det[A]et 2 bitA™isbs (1.62)

We can simply proof this by written all expressions in matrix form.



1.6.2 Fermionic generating functional

Free fermionic field action functional, i.e., Dirac action functional, is

Solts, 9] = / Lo ()i, — m)b(a) (1.63)
= / dhedtyd(x)Gole,y) () = (6, Gy ') (1.64)
Go(z,y) = (id, —m)~6W(z —y) (1.65)

The generating functional is defined in the form
ZolJ, j] _ /Dw,IE]eiSoWﬂ/_J]ﬂ(@E,J)H(JW) (1.66)

With the fermionic quantum field, i.e. {1,%} = 1, then Zy[J, J] is Grass-
mannian Gaussian integral. Such that

ZolJ, J] = det[iGg el Go ) (1.67)
For example

=i 02 Z[J, ]
Gy ) = 200,000 @)0T () |,_s (1.68)

For the case of interaction, the analysis can be done similar to the bosonic
generating function. In case of Yukawa-type interaction, the combined bosonic
and generating functional can be defined and used for generating the pertur-
bative expansion of the interacting S-matrix.



