1 Functional Integral Representations

1.1 Path integral in quantum mechanics

1.1.1 Basic of quantum dynamics

Let $\psi(x,t)$ be a time-dependent state function of quantum system satisfy Schrodinger equation

$$i\partial_t \psi(x,t) = H\psi(x,t)$$
 (1.1)

where $H = \frac{p^2}{2m} + V(x)$ is a system Hamiltonian. There will be a unitary time-operator U(t,0) with the action

$$\psi(x,t) = U(t,0)\psi(x,0) \tag{1.2}$$

We can observe that the unitary operator itself satisfy the Schrödinger equation (1.1)

$$i\partial_t U(t,0) = HU(t,0) \to U(t,0) = e^{-iHt}$$
 (1.3)

with the fact that U(0,0) = 1 and $H \neq H(t)$.

1.1.2 Feynman propagator

Using the normalization property of the state function $\int dx \psi^*(x,t) \psi(x,t) = 1$, one can simple write the identity

$$\psi(b,T) = \int da\psi(b,T)\psi^*(a,0)\psi(a,0) \equiv \int daK(b,a;T)\psi(a,0)$$
 (1.4)

Mathematically K(b, a; T) is known in the name of *integral kernel*, but physicists is known in the name of *Feynman propagator*, according to R. Feynman who first wrote this relation in his PhD thesis. The quantum meaning of Feynman propagator is the probability amplitude finding a particle at a at the initial time 0 and then finding it again at b at later time T > 0.

We can get more detail analysis of Feynman propagator, with the help of Dirac *bracket* notation, as in the following

$$K(b, a:T) = \psi(b, T)\psi^*(a, 0) = \langle b|\psi(T) \rangle \langle \psi(0)|a \rangle$$

= $\langle b|U(T, 0)|\psi(0) \rangle \langle \psi(0)|a \rangle = \langle b|U(T, 0)|a \rangle$ (1.5)

This bring us to be able to do the calculation of the Feynman propagator. First we use the semi-group property of the unitary operator such that when we break the time interval [T, 0] into N of small duration ϵ as

$$T = N\epsilon \rightarrow t_n = n\epsilon$$
, with $t_0 = 0$, $t_N = T$ (1.6)

The we can write

$$U(T,0) = \underbrace{U(\epsilon)U(\epsilon)...U(\epsilon)}_{N-terms}, \quad U(\epsilon) = e^{-i\epsilon H}$$
(1.7)

From (1.5) we will have

$$K(b, a:T) = \langle b | \underbrace{U(\epsilon)U(\epsilon)...U(\epsilon)}_{N-terms} | a \rangle$$

$$= \prod_{n=1}^{N-1} \left[\int dx_n \right] \langle x_N | U(\epsilon) | x_{N-1} \rangle \langle x_{N-1} | U(\epsilon) | x_{N-2} \rangle ...$$

$$... \langle x_n | U(\epsilon) | x_{n-1} \rangle ... \langle x_2 | U(\epsilon) | x_1 \rangle \langle x_1 | U(\epsilon) | x_0 \rangle$$

$$= \prod_{n=1}^{N-1} \left[\int dx_n \right] K(x_N, x_{N-1}; \epsilon) K(x_{N-1}, x_{N-2}; \epsilon) ...$$

$$... K(x_n, x_{n-1}; \epsilon) ... K(x_2, x_1; \epsilon) K(x_1, x_0; \epsilon)$$

$$... K(x_n, x_{n-1}; \epsilon) ... K(x_2, x_1; \epsilon) K(x_1, x_0; \epsilon)$$

$$(1.9)$$

where we have used the expression

$$K(x_n, x_{n-1}; \epsilon) = \langle x_n | e^{-i\epsilon H} | x_{n-1} \rangle.$$
 (1.10)

In the limit of $N \to \infty$, or $\epsilon \to 0$, we will have

$$K(x_{n}, x_{n-1}; \epsilon) = \langle x_{n} | e^{-i\epsilon H} | x_{n-1} \rangle \simeq \langle x_{n} | e^{-ip^{2}/2m} e^{-i\epsilon V(x)} | x_{n-1} \rangle$$

$$\simeq e^{-i\epsilon V(x_{n})} \langle x_{n} | e^{-i\epsilon p^{2}/2m} | x_{n-1} \rangle$$

$$\simeq e^{-i\epsilon V(x_{n})} \int dp_{n} \langle x_{n} | e^{-i\epsilon p^{2}/2m} | p_{n} \rangle \langle p_{n} | x_{n-1} \rangle$$

$$\simeq e^{-i\epsilon V(x_{n})} \int dp_{n} e^{-i\epsilon p_{n}^{2}/2m} \langle x_{n} | p_{n} \rangle \langle p_{n} | x_{n-1} \rangle$$

$$\simeq e^{-i\epsilon V(x_{n})} \int \frac{dp_{n}}{2\pi} e^{-i\epsilon p_{n}^{2}/2m + ip_{n}(x_{n} - x_{n-1})}$$

$$\simeq \left(\frac{m}{2\pi i\epsilon}\right)^{1/2} \exp\left(\frac{im\epsilon}{2} \left(\frac{x_{n} - x_{n-1}}{\epsilon}\right)^{2} - i\epsilon V(x_{n})\right) \quad (1.11)$$

after we have used the fact that $\langle x|p \rangle = e^{ipx}/\sqrt{2\pi}$, and we have applied the Gaussian integration over $\iint dp_n$. Insertion into (1.9), we get

$$K(b, a; T) = \lim_{N \to \infty} \prod_{n=1}^{N-1} \left[\int dx_n \right] \left(\frac{m}{2\pi i \epsilon} \right)^{N/1} \dots$$

$$\times \exp \left(i\epsilon \sum_{n=1}^{N} \frac{m}{2} \left(\frac{x_n - x_{n-1}}{\epsilon} \right)^2 - V(x_n) \right)$$
(1.12)

$$\to K(b, a; T) = \int \mathcal{D}[x]e^{iS[x]}, \quad S[x] = \int_0^T dtL \tag{1.13}$$

$$L = \frac{1}{2}m\dot{x}^2 - V(x) \tag{1.14}$$

It is known as Feynman path integral formula.

1.1.3 The generating function

According to its quantum meaning, we can do the quantum expectation value through the *generating function* which is written in term of path integral as

$$z[j] = \int \mathcal{D}[x]e^{iS[x]+i\int dt x(t)j(t)}$$
(1.15)

The we can have

$$\langle x \rangle = \frac{\int \mathcal{D}[x]x(t)e^{iSx]}}{\int \mathcal{D}[x]e^{iS[x]}} = \frac{1}{z[j]}(-i)\frac{\partial z[j]}{\partial j(t)}\Big|_{i=0}$$
 (1.16)

$$\langle f(x) \rangle = \frac{1}{z[j]} f\left((-i) \frac{\partial}{\partial j(t)}\right) z[j] \Big|_{j=0}$$
 (1.17)

1.2 Gaussian integrals

The method we have used is Gaussian integration, in this section we come to summarize of the integration.

1.2.1 Single-variable integration

$$I(a,b) = \int_{-\infty}^{+\infty} dx e^{-ax^2/2 + bx} = \sqrt{\frac{\pi}{a}} e^{b^2/2a}$$
 (1.18)

1.2.2 Multi-variable integration

$$I(\{a_i\}, \{b_i\}) = \prod_{i=1}^{N} \left[\int dx_i \right] e^{-\frac{1}{2} \sum_{i=1}^{N} a_i x_i^2 + b_i x_i}$$

$$= \frac{\pi^{N/2}}{\sqrt{\prod_{i=1}^{N} a_i}} e^{\sum_{i=1}^{N} b_i^2 / 2a_i}$$
(1.19)

Define matrices $A = \{a_i \delta_{ij}\}, b = \{b_i\}, b = \{x_i\}, \text{ we can rewrite (1.19) in matrix form as}$

$$I(A,B) = \int dX e^{-\frac{1}{2}b \cdot A \cdot x + b \cdot x} = \pi^{N/2} det[A]^{-1/2} e^{\frac{1}{2}b \cdot A^{-1} \cdot b}$$
 (1.20)

$$\to \pi^{-N/2} \Pi_{i=1}^N \left[\int dx_i \right] \equiv \int \mathcal{D}[x] \tag{1.21}$$

$$\int \mathcal{D}[x]e^{-\frac{1}{2}x \cdot A \cdot x + b \cdot x} = \det[A]^{-1/2}e^{\frac{1}{2}b \cdot A^{-1} \cdot b}$$
 (1.22)

1.3 Functional integral of bosonic field

Let $\phi(x,t)$ be a bosonic field with the Lagrangian $\mathcal{L}_0 = \frac{1}{2}((\partial \phi)^2 - m^2\phi^2)$, we can extend the path integral to be the functional integral by doing the following substitutions

$$x(t) o \phi(x,t)$$
 (1.23)

$$z[j(t)] \longrightarrow Z_0[J(x,t)] = \int \mathcal{D}[\phi] e^{iS_0[\phi] + i \int dx \int dt \phi(x,t) J(x,t)}$$
(1.24)

$$S_0[\phi] = \int dx \int dt \mathcal{L}_0(\phi, \partial_\mu \phi) \qquad (1.25)$$

From now we come to use a shorthand notations of (x, t) = x of dim-4, and

$$\int d^4x \phi(x) J(x) = (\phi, J)$$

$$S_0[\phi] = \int d^4x \mathcal{L} = \int d^4x \frac{1}{2} (\partial \phi \cdot \partial \phi - m^2 \phi^2)$$
(1.26)

$$= -\frac{1}{2} \int d^2x \phi (\partial^2 + m^2) \phi = -\frac{1}{2} (\phi, G_0^{-1} \phi)$$
 (1.27)

where we have ignore the total derivative term, and G_0^{-1} is the differential operator appears in the free field equation of motion. We can apply the Gaussian integral to evaluate $Z_0[J]$ and results to

$$\int \mathcal{D}[\phi] = \lim_{N \to \infty} \pi^{-N/2} \prod_{n=1}^{N} \left[\int d\phi_n \right], \quad \phi_n = \phi(x_n)$$
 (1.28)

$$Z_0[J] = \int \mathcal{D}e^{-\frac{i}{2}(\phi, G_0^{-1}\phi) + i(\phi, J)} = \det[G_0]^{1/2} e^{\frac{i}{2}(J, G_0 J)}$$
(1.29)

$$(J, G_0 J) = \int d^4 x \int d^4 x' J(x) G_0(x, x') J(x')$$
 (1.30)

$$G_0(x, x') = (\partial_x^2 + m^2)^{-1} \delta^{(4)}(x - x')$$
 (1.31)

1.4 Correlation functions and Wick's theorem

By definition of the N-points correlation function

$$C(x_{1},...,x_{N}) = \langle 0|T[\phi(x_{1})...\phi(x_{N})]|0\rangle$$

$$= \frac{\int \mathcal{D}[\phi]\phi(x_{1})...\phi(x_{N})e^{iS_{0}[\phi]}}{\int \mathcal{D}[\phi]e^{-S_{0}[\phi]}}$$
(1.32)

$$= \frac{1}{Z_0[J]} (-i)^N \frac{\partial^N Z_0[J]}{\partial J(x_1)...\partial J(x_N)} \bigg|_{J=0}$$
 (1.33)

Feynman propagator

$$D_F(x,y) = \langle 0|T[\phi(x)\phi(y)]|0\rangle = iG_0(x,y)$$
(1.34)

Wick's theorem can be derived easily as

$$C(x_1, ..., x_N) = \begin{cases} 0, & N - odd \\ \sum_P \Pi'_{i,j} D_F(x_{Pi}, x_{Pj}), & N - even \end{cases}$$
 (1.35)

For example

$$C(1,2,3,4) = D_F(1,2)D_F(3,4) + D_F(1,3)D_F(2,4) + D_F(1,4)D_F(2,3)$$
(1.36)

1.5 Field interaction and perturbative expansion

Insertion of interaction Lagrangian

$$\mathcal{L}_I = -\mathcal{V}(\phi) \tag{1.37}$$

The generating functional (1.24) becomes

$$Z[J] = \int \mathcal{D}[\phi] e^{iS_0[\phi] - i \int d^4 x \mathcal{V}(\phi) + i \int d^4 x \phi(x) J(x)}$$
(1.38)

$$= e^{-i \int d^4 x \mathcal{V}(-i\partial/\partial J)} \int \mathcal{D}[\phi] e^{iS_0[\phi] + i \int d^4 x \phi(x) J(x)}$$

$$= e^{-i\int d^4x \mathcal{V}(-i\partial/\partial J)} Z_0[J] \qquad (1.39)$$

$$= \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int d^4x_1 \dots \int d^4x_n \mathcal{V}(-i\partial_{J(x_1)}) \dots \mathcal{V}(-i\partial_{J(x_n)}) Z_0[J]$$
 (1.40)

We do have

$$Z^{(0)}[J] = Z_0[J] (1.41)$$

$$Z^{(1)}[J] = -i \int d^4x' \mathcal{V}(-i\partial_{J(x')}) Z_0[J]$$
 (1.42)

In case of ϕ^4 -interaction

$$\mathcal{V}(\phi) = \lambda \phi^{4}(x) \to Z^{(1)}[J] = -i\lambda \int d^{4}x' \left(-i\frac{\partial}{\partial J(x')}\right)^{4} Z_{0}[J] \qquad (1.43)$$

$$\to D_{F}^{(1)}(x,y) = -i\lambda D_{F}(x,y) \int d^{4}x' D_{F}(x',x') D_{F}(x',x')$$

$$-i\lambda \int d^{4}dx' D_{F}(x,x') D_{F}(x',x') D_{F}(x',y) \qquad (1.44)$$

Figure 1.1: First order field propagator in ϕ^4 -interaction.

This shows that $\mathbb{Z}[J]$ generate both connected and disconnected Feynman propagators. Let us define the functional

$$iW[J] = \ln Z[J] \to Z[J] = e^{iW[J]}$$
 (1.45)

$$i\frac{\partial W[J]}{\partial J(x)} = \frac{1}{Z[J]} \frac{\partial Z[J]}{\partial J(x)}$$
 (1.46)

$$i\frac{\partial^2 W[J]}{\partial J(x)\partial J(y)} = \frac{1}{Z[J]} \frac{\partial^2 Z[J]}{\partial J(x)\partial J(y)} - \frac{1}{Z^2[J]} \frac{\partial Z[J]}{\partial J(x)} \frac{\partial Z[J]}{\partial J(y)}$$
(1.47)

So that

$$-i \left. \frac{\partial^2 W[J]}{\partial J(x)\partial J(y)} \right|_{J=0} = \langle \phi(x)\phi(y)\rangle - \langle \phi(x)\rangle \langle \phi(y)\rangle \tag{1.48}$$

$$= \langle \phi(x)\phi(y)\rangle_C \tag{1.49}$$

It generates the *connected correlation function*, i.e., by definition

$$\langle \phi(x_1)...\phi(x_N) \rangle_C = \langle \phi(x_1)...\phi(x_N) \rangle - \sum_{Part,(1..k)} (\Pi_i \langle \phi(x_{i1})...\phi(x_{ik}) \rangle, \ k < m) \quad (1.50)$$

From this fact one can write

$$W[J] = i \sum_{n=1}^{\infty} \frac{1}{n!} J(x_1) ... J(x_n) \langle \phi(x_1) ... \phi(x_n) \rangle_C$$
 (1.51)

This functional can be used to determine semi-classical approximation in quantum field theory calculation developed by Schwinger. We will look at this later.

1.6 Functional integral of fermionic field

1.6.1 Grassmann variables

Let $\{\theta_i\}$ be a set of n-Grassmann variables, satisfy the Grassmann algebra

$$\{\theta_i, \theta_j\} = \delta_{ij} \to \theta_i^2 = 0 \tag{1.52}$$

Let $f(\theta)$ be a function of single Grassmann variable theta, its form form will be

$$f(\theta) = a + b\theta, \quad a, b \in R \tag{1.53}$$

From this expression, we can determine the Grassmann calculus, from regular differentiation, we have

$$\frac{d}{d\theta}f(\theta) = \frac{d}{d\theta}(a+b\theta) = b \tag{1.54}$$

From Berezin's definition
$$\int d\theta = 0$$
, $\int d\theta \theta = 1$ (1.55)

$$\rightarrow \int d\theta f(\theta) = \int d\theta (a + b\theta) = b \tag{1.56}$$

The Grassmann integral gives a similar result to the differentiation, which look curios. Let us determine the Gaussian function of 2n-Grassmann variables

$$G[A] = \exp\left\{\sum_{i,j} \bar{\theta}_i A_{ij} \theta_i\right\} = \left(1 + \sum_{i,j} \bar{\theta}_i A_{ij} \theta_j\right)$$
$$= \Pi_i \left(1 + \bar{\theta}_i \sum_j A_{ij} \theta_j\right) \tag{1.57}$$

$$\to I[A] = \Pi_i \left[\int d\theta_i d\bar{\theta}_i \right] G[A] = \det[A] \tag{1.58}$$

Generalize with the linear terms

$$G[A, b, \bar{b}] = \exp\left\{\sum_{i,j} \bar{\theta}_i A_{ij} \theta_j + \sum_i (\bar{b}_i \theta_i + \bar{\theta}_i b_i)\right\}$$
(1.59)

$$\rightarrow \theta_i \rightarrow \theta_i' = \theta_i + \sum_i (A^{-1})_{ij} b_j$$
 also for $\bar{\theta}_i$ (1.60)

$$\to G[A, b] = \exp\left\{\sum_{i,j} \bar{\theta}'_i A_{ij} \theta'_j + \sum_{ij} \bar{b}_i (A^{-1})_{ij} b_j\right\}$$
(1.61)

$$\rightarrow I[A, b] = \Pi_i \left[\int d\theta_i' d\bar{\theta}_i' \right] G[A, b] = \det[A] e^{+\sum_{ij} \bar{b}_i (A^{-1})_{ij} b_j}$$
 (1.62)

We can simply proof this by written all expressions in matrix form.

1.6.2 Fermionic generating functional

Free fermionic field action functional, i.e., Dirac action functional, is

$$S_0[\psi, \bar{\psi}] = \int d^4x \bar{\psi}(x) (i\partial_x - m)\psi(x)$$
 (1.63)

$$\equiv \int d^4x d^4y \bar{\psi}(x) G_0(x,y)^{-1} \psi(y) \equiv (\bar{\psi}, G_0^{-1} \psi)$$
 (1.64)

$$G_0(x,y) = (i\partial_x - m)^{-1}\delta^{(4)}(x-y)$$
(1.65)

The generating functional is defined in the form

$$Z_0[J, \bar{J}] = \int \mathcal{D}[\psi, \bar{\psi}] e^{iS_0[\psi, \bar{\psi}] + i(\bar{\psi}, J) + i(\bar{J}, \psi)}$$
(1.66)

With the fermionic quantum field, i.e. $\{\psi, \bar{\psi}\} = 1$, then $Z_0[J, \bar{J}]$ is Grassmannian Gaussian integral. Such that

$$Z_0[J, \bar{J}] = \det[iG_0^{-1}]e^{i(\bar{J}, G_0J)}$$
(1.67)

For example

$$G_0(y,x) = \frac{-i}{Z_0[0,0]} \frac{\partial^2 Z_0[J,\bar{J}]}{\partial J(x)\partial \bar{J}(y)} \bigg|_{J=\bar{J}=0}$$
 (1.68)

For the case of interaction, the analysis can be done similar to the bosonic generating function. In case of Yukawa-type interaction, the combined bosonic and generating functional can be defined and used for generating the perturbative expansion of the interacting S-matrix.