

2 Gauge Fields and Functional Quantization

2.1 Gauge symmetry

2.1.1 Gauge transformation

For a vector field $A^\mu(x)$, its field strength tensor $F^{\mu\nu} = \partial^\mu A^\nu - \partial^\nu A^\mu$ and field Lagrangian

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} \quad (2.1)$$

is invariant under a *gauge transformation* (GT)

$$A^\mu \rightarrow A'^\mu = A^\mu + \partial^\mu \alpha \quad (2.2)$$

where $\alpha(x)$ is any real scalar function. The gauge invariant matter-coupling gauge field theory, i.e. with the complex scalar field $\phi(x)$, can be modeled with the Lagrangian

$$\mathcal{L} = (D_\mu \phi)^*(D^\mu \phi) - m^2 \phi^* \phi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} \quad (2.3)$$

$$\text{Covariant derivative : } D_\mu \phi = (\partial_\mu + igA_\mu)\phi \quad (2.4)$$

$$\rightarrow F_{\mu\nu} = \frac{-i}{g}[D_\mu, D_\nu] \quad (2.5)$$

$$\text{GT : } A_\mu(x) \rightarrow A_\mu(x) + \frac{1}{g}\partial_\mu \alpha(x), \quad \phi(x) \rightarrow e^{i\alpha(x)}\phi(x) \quad (2.6)$$

$$\phi^* \phi \rightarrow \phi^* \phi, \text{ and } F_\mu \rightarrow F_{\mu\nu} \quad (2.7)$$

$$D_\mu \phi \rightarrow (\partial_\mu + igA_\mu + i\partial_\mu \alpha)e^{i\alpha}\phi = e^{i\alpha}(D_\mu \phi)$$

$$\text{So that } (D_\mu \phi)^*(D^\mu \phi) \rightarrow (D_\mu \phi)^*(D^\mu \phi) \quad (2.8)$$

This is how *gauge symmetry* play its role in the matter-coupled gauge field theory.

2.1.2 Gauge groups and their algebras

Let G be a gauge group, with its generator $g = e^{i\alpha}$, with $g^\dagger g = 1$. We can rewrite the gauge transformation in term of the action of g as

$$\phi \rightarrow g\phi, \text{ and } A_\mu \rightarrow g^\dagger(A_\mu + \frac{i}{g}\partial_\mu)g \quad (2.9)$$

The gauge group G can be classified to be

- The simplest *local* $U(1)$ group when $\alpha(x)$ is any real scalar function. It will be called *global* $U(1)$ for the case of α is being a real constant. The gauge transformation on field can be done for any complex-valued field function.

- The local $SU(N)$ group when $\alpha(x)$ is a matrix-valued function, i.e., the square matrix. Its expansion of the basis is written in the form

$$\alpha(x) = \alpha_a(x)t^a, \quad a = 1, 2, \dots, \dim(N) \quad (2.10)$$

where $\dim(N) = N^2 - 1$ is dimension of $N \times N$ square matrix space, i.e., where $\{t^a\}$ is its basis set. Note that $\{t^a\}$ is defined to be the hermitian square matrices, with the basic properties of $\text{Tr}(t^a) = 0$ and $\text{Tr}(t^a t^b) = 2\delta^{ab}$

The algebra of $N > 1$ gauge group is determined from the commutation relation

$$[t^a, t^b] = i f^{abc} t^c, \quad \{t^a, t^b\} = \frac{1}{N} \delta^{ab} + d^{abc} t^c \quad (2.11)$$

where f^{abc} is known as its *structure constants*. The *irreducible* representation of G , in terms of $N \times N$ matrix, is constructed from the eigen-basis of Casimir operator(s) that constructed from a set of basis $\{t^a\}$. The *adjoint* representation of G , the set of generators constructed from the structure constants in form of $(N^2 - 1) \times (N^2 - 1)$ matrices, as

$$(t^a)^{bc} = i f^{abc} \quad (2.12)$$

The gauge field is classified according to its gauge group to be

- abelian gauge field for a gauge group of $U(1)$
- non-abelian gauge field for a gauge group of $SU(N)$, with $N > 1$

2.1.3 Gauge fixing condition

In order to get physical prediction of the gauge field $A_\mu(x)$, i.e., the measurable value of the corresponding electric and magnetic fields, we have to kill its gauge symmetry, by assigning the *gauge fixing* condition. A general form of gauge fixing condition is denoted in functional form as

$$G[A_\mu] = 0 \quad (2.13)$$

2.2 Functional quantization of abelian gauge field

For a local $U(1)$ gauge field $A^\mu(x)$, its action functional is

$$\begin{aligned} S_0[A_\mu] &= -\frac{1}{4} \int d^4x F_{\mu\nu} F^{\mu\nu} = -\frac{1}{2} \int d^4x \partial_\mu A_\nu (\partial^\mu A^\nu - \partial^\nu A^\mu) \\ &= +\frac{1}{2} \int d^4x A^\nu (\partial^2 g_{\mu\nu} - \partial_\mu \partial_\nu) A^\mu \\ &= \frac{1}{2} \int d^4x d^4y A^\mu(x) \Delta_{\mu\nu}^{-1}(x, y) A^\nu(y) \end{aligned} \quad (2.14)$$

$$\text{where } \Delta_{\mu\nu}^{-1}(x, y) = (\partial^2 g_{\mu\nu} - \partial_\mu \partial_\nu)_x \delta^{(4)}(x - y) \quad (2.15)$$

The generating functional is written in the form

$$Z_0[J] = \int \mathcal{D}[A_\mu] e^{iS_0[A_\mu] + i \int d^4x J_\mu(x) A^\mu(x)} \quad (2.16)$$

The gauge fixing condition is need to be inserted into this expression in order to kill the gauge symmetry of a gauge field $A_\mu(x)$.

Since gauge transformation is a kind of unitary transformation U , so that let us denote the gauge field with gauge symmetry as $A_\mu^U(x)$, it is said to be a configuration of gauge field on *gauge manifold*. Following Faddeev and Popov, let us define the integral

$$\Delta_G^{-1}[A_\mu] = \int \mathcal{D}[U] \delta(G[A_\mu]) \quad (2.17)$$

This expression means that the construction of $\Delta_G^{-1}[A_\mu]$ is done under the constraint condition $G[A_\mu] = 0$.

Let us show that $\Delta_G^{-1}[A_\mu]$ itself is gauge invariant. Let us assign a gauge transformation $U \rightarrow UU'$, so that

$$\begin{aligned} \mathcal{D}[U] &\rightarrow \mathcal{D}[UU'] = \mathcal{D}[U] \quad \text{Haar measure} \\ &\rightarrow \Delta_G^{-1}[A_\mu^{U'}] = \int \mathcal{D}[U] \delta(G[A_\mu^{UU'}]), \quad U'' = UU' \\ &= \int \mathcal{D}[U''] \delta(G[A_\mu^{U''}]) = \Delta_G^{-1}[A_\mu] \end{aligned} \quad (2.18)$$

From (2.17), one can write

$$1 = \Delta_G[A_\mu] \int \mathcal{D}[U] \delta(G[A_\mu^U]) \quad (2.20)$$

Insertion into (2.16) can be consistently as

$$\begin{aligned} Z_0[J] &= \int \mathcal{D}[A_\mu] \times 1 \times e^{iS[A_\mu, J_\mu]} \\ &= \int \mathcal{D}[A_\mu] \Delta_G[A_\mu] \int \mathcal{D}[U] \delta(G[A_\mu^U]) e^{iS[A_\mu, J_\mu]} \end{aligned} \quad (2.21)$$

Now make a change of variable $A_\mu \rightarrow A_\mu^{U'}$, we will have from (2.21)

$$Z_0[J] = \int \mathcal{D}[U] \int \mathcal{D}[A_\mu^{U'}] e^{iS[A_\mu^{U'}, J_\mu]} \Delta_G[A_\mu^{U'}] \delta(G[A_\mu^{U'U}]) \quad (2.22)$$

Now assign $U' = U^1$, and make use of the gauge invariant of $\mathcal{D}[A_\mu], S[A_\mu, J_\mu]$ and $\Delta_G[A_\mu]$, we will have

$$Z_0[J] = \left[\int \mathcal{D}[U] \right] \int \mathcal{D}[A_\mu] \Delta_G[A_\mu] \delta(G[A_\mu]) e^{iS[A_\mu, J_\mu]} \quad (2.23)$$

Note that the factor $\int \mathcal{D}[U]$ is actually infinite, but trivially deal to nothing in quantum field calculation.

We now compute the factor $\Delta_G[A_\mu]$, by using the condition $G[A_\mu]$, as

$$\mathcal{D}[U] = \mathcal{D}[G] \left| \frac{\delta U}{\delta G} \right| \quad (2.24)$$

$$\rightarrow \Delta_G^{-1}[A_\mu] = \int \mathcal{D}[U] \delta(G[A_\mu^U]) = \int \mathcal{D}[G] \left| \frac{\delta U}{\delta G} \right| \delta(G) = \left| \frac{\delta U}{\delta G} \right|_{G=0} \quad (2.25)$$

$$\rightarrow \Delta_G[A_\mu] = \left| \frac{\delta G}{\delta U} \right|_{G=0} \quad (2.26)$$

For example

$$U = e^{i\phi(x)}, \quad G[A_\mu^U] = \partial_\mu(A^\mu + \partial^\mu\phi) = \partial_\mu A^\mu + \partial^2\phi \quad (2.27)$$

$$\frac{\delta G(x)}{\delta\phi(y)} = \partial^2\delta(x-y) \rightarrow \Delta_G[A_\mu] = \det|\partial^2| \quad (2.28)$$

which is a constant independent of A_μ . Next let us modify the gauge fixing condition to be $G[A_\mu] = c(x)$, where $c(x)$ is arbitrary scalar function of x . Now from (2.23), we will have

$$Z_0[J] \sim \int \mathcal{D}[A_\mu] \delta(G[A_\mu] - c(x)) e^{iS[A,J]} \quad (2.29)$$

We now average over arbitrary function $c(x)$ with a Gaussian weight as

$$\begin{aligned} Z_0[J] &= \mathcal{N} \int \mathcal{D}[c] e^{-i \int d^4x c^2(x)/2\alpha} \int \mathcal{D}[A_\mu] \delta(G[A_\mu] - c(x)) e^{iS[A,J]} \\ &= \mathcal{N} \int \mathcal{D}[A_\mu] e^{iS[A,J]} e^{-i \int d^4x G^2[A_\mu]/2\alpha} \end{aligned} \quad (2.30)$$

For example of $G[A_\mu] = \partial_\mu A^\mu$, the gauge field action functional will appear in the form

$$\begin{aligned} S_0[A_\mu] &= \frac{1}{2} \int d^4x A^\mu(x) (\partial^2 g_{\mu\nu} - \partial_\mu \partial_\nu) A^\nu(x) - \frac{1}{2\alpha} \int d^4x (\partial_\mu A^\mu)^2(x) \\ &= \frac{1}{2} \int d^4x A^\mu(x) \left(\partial^2 g_{\mu\nu} - \frac{\alpha-1}{\alpha} \partial_\mu \partial_\nu \right) A^\nu(x) \end{aligned} \quad (2.31)$$

$$= \frac{1}{2} \int d^4x d^4y A^\mu(x) \Delta^{-1}(x, y; \alpha)_{\mu\nu} A^\nu(y) \quad (2.32)$$

$$\Delta^{-1}(x, y; \alpha)_{\mu\nu} = \left(\partial^2 g_{\mu\nu} - \frac{\alpha-1}{\alpha} \partial_\mu \partial_\nu \right) \delta^{(4)}(x-y) \quad (2.33)$$

And finally we get

$$Z_0[J] = \mathcal{N}' e^{\frac{i}{2} \int d^4x d^4y J^\mu(a) \Delta_{\mu\nu}(x, y; \alpha) J^\nu(y)} \quad (2.34)$$

with a gauge fixing parameter α .

2.3 Functional quantization of non-abelian gauge field

2.4 BRST symmetry