
2 Gauge Fields and Functional Quantization

2.1 Gauge symmetry

2.1.1 Gauge transformation

For a vector field Aµ(x), its field strength tensor Fµν = ∂µAν − ∂νAµ and field
Lagrangian

L = −1

4
FµνF

µν (2.1)

is invariant under a gauge transformation (GT)

Aµ → A′µ = Aµ + ∂µα (2.2)

where α(x) is any real scalar function. The gauge invariant matter-coupling
gauge field theory, i.e. with the complex scalar field φ(x), can be modeled with
the Lagrangian

L = (Dµφ)∗(Dµφ)−m2φ∗φ− 1

4
FµνF

µν (2.3)

Covariant derivative : Dµφ = (∂µ + igAµ)φ (2.4)

→ Fµν =
−i
g

[Dµ, Dν ] (2.5)

GT : Aµ(x)→ Aµ(x) +
1

g
∂µα(x), φ(x)→ eiα(x)φ(x) (2.6)

φ∗φ→ φ∗φ, and Fµ → Fµν (2.7)

Dµφ→ (∂µ + igAµ + i∂µα)eiαφ = eiα(Dµφ)

So that (Dµφ)∗(Dµφ)→ (Dµφ)∗(Dµφ) (2.8)

This is how gauge symmetry play its role in the matter-coupled gauge field
theory.

2.1.2 Gauge groups and their algebras

Let G be a gauge group, with its generator g = eiα, with g†g = 1. We can
rewrite the gauge transformation in term of the action of g as

φ→ gφ, and Aµ → g†(Aµ +
i

g
∂µ)g (2.9)

The gauge group G can be classified to be

• The simplest local U(1) group when α(x) is any real scalar function. It
will be called global U(1) for the case of α is being a real constant. The
gauge transformation on field can be done for any complex-valued field
function.
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• The local SU(N) group when α(x) is a matrix-valued function, i.e., the
square matrix. Its expansion of the basis is written in the form

α(x) = αa(x)ta, a = 1, 2, ..., dim(N) (2.10)

where dim(N) = N2 − 1 is dimension of N ×N square matrix space, i.e.,
where {ta} is its basis set. Noe that {ta} is defined to be the hermitian
square matrices, with the basic properties of Tr(ta) = 0 and Tr(tatb) =
2δab

The algebra of N > 1 gauge group is determined from the commutation relation

[ta, tb] = ifabctc, {ta, tb} =
1

N
δab + dabctc (2.11)

where fabc is known as its structure constants. The irreducible representation
of G , in terms of N ×N matrix, is constructed from the eigen-basis of Casimir
oeprator(s) that constructed from a set o basis {ta}. The adjoint representation
of G, the set of generators constructed form the structure constants in form of
(N2 − 1)× (N2 − 1) matrices, as

(ta)bc = ifabc (2.12)

The gauge field is classified according to it gauge group to be

• abelian gauge field for a gauge group of U(1)

• non-abelian gauge field for a gauge group of SU(N), with N > 1

2.1.3 Gauge fixing condition

In order to get physical prediction of the gauge field Aµ(x), i.e., the measurable
value of the corresponding electric and magnetic fields, we have to kill its gauge
symmetry, by assigning the gauge fixing condition. A general form of gauge
fixing condition is denoted in functional form as

G[Aµ] = 0 (2.13)

2.2 Functional quantization of abelian gauge field

For a local U(1) gauge field Aµ(x), its action functional is

S0[Aµ] = −1

4

∫
d4xFµνF

µν = −1

2

∫
d4x∂µAν(∂µAν − ∂νAµ)

= +
1

2

∫
d4xAν(∂2gµν − ∂µ∂ν)Aµ

=
1

2

∫
d4xd4yAµ(x)∆−1

µν (x, y)Aν(y) (2.14)

where ∆−1
µν (x, y) = (∂2gµν − ∂µ∂ν)xδ

(4)(x− y) (2.15)
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The generating functional is written in the form

Z0[J ] =

∫
D[Aµ]eiS0[Aµ]+i

∫
d4xJµ(x)Aµ(x) (2.16)

The gauge fixing condition is need to be inserted into this expression in order
to kill the gauge symmetry of a gauge field Aµ(x).

Since gauge transformation is a kind of unitary transformation U , so that
let us denote the gauge field with gauge symmetry as AUµ (x), it is said to be a
configuration of gauge field on gauge manifold. Following Faddeev and Popov,
let us define the integral

∆−1
G [Aµ] =

∫
D[U ]δ(G[Aµ]) (2.17)

This expression means that the construction of ∆−1
G [Aµ] is done under the con-

straint condition G[Aµ] = 0.
Let us show that ∆−1

G [Aµ] itself is gauge invariant. Let us assign a gauge
transformation U → UU ′, so that

D[U ]→ D[UU ′] = D[U ] Haar measure (2.18)

→ ∆−1
D [AU

′

µ ] =

∫
D[U ]δ(G[AUU

′

µ ]), U ′′ = UU ′

=

∫
D[U ′′]δ(G[AU

′′

µ ]) = ∆−1
G [Aµ] (2.19)

From (2.17), one can write

1 = ∆G[Aµ]

∫
D[U ]δ(G[AUµ ]) (2.20)

Insertion into (2.16) can be consistently as

Z0[J ] =

∫
D[Aµ]× 1× eiS[Aµ,Jµ]

=

∫
D[Aµ]∆G[Aµ]

∫
D[U ]δ(G[AUµ ])eiS[Aµ,Jµ] (2.21)

Noe make a change of variable Aµ → AU
′

µ , we will have from (2.21)

Z0[J ] =

∫
D[U ]

∫
D[AU

′

µ ]eiS[AU
′

µ ,Jµ]∆G[AU
′

µ ]δ(G[AU
′U

µ ]) (2.22)

Now assign U ′ = U 1 , and make use of the gauge invariant of D[Aµ], S[Aµ, Jµ]
and ∆G[Aµ], we will have

Z0[J ] =

[∫
D[U ]

] ∫
D[Aµ]∆G[Aµ]δ(G[Aµ])eiS[Aµ,Jµ] (2.23)

3



Note that the factor
∫
D[U ] is actually infinite, but trivially deal to nothing in

quantum field calculation.
We now compute the factor ∆G[Aµ], by using the condition G[Aµ], as

D[U ] = D[G]

∣∣∣∣δUδG
∣∣∣∣ (2.24)

→ ∆−1
G [Aµ] =

∫
D[U ]δ(G[AUµ ]) =

∫
D[G]

∣∣∣∣δUδG
∣∣∣∣ δ(G) =

∣∣∣∣δUδG
∣∣∣∣
G=0

(2.25)

→ ∆G[Aµ] =

∣∣∣∣δGδU
∣∣∣∣
G=0

(2.26)

For example

U = eiφ(x), G[AUµ ] = ∂µ(Aµ + ∂µφ) = ∂µA
µ + ∂2φ (2.27)

δG(x)

δφ(y)
= ∂2δ(x− y)→ ∆G[Aµ] = det |∂2| (2.28)

which is a constant independent of Aµ. Next let us modify the gauge fixing
condition to be G[Aµ] = c(x), where c(x) is arbitrary scalar function of x. Now
from (2.23), we will have

Z0[J ] ∼
∫
D[Aµδ(G[Aµ]− c(x))eiS[A,J] (2.29)

We now average over arbitrary function c(x) with a Gaussian weight as

Z0[J ] = N
∫
D[c]e−i

∫
d4xc2(x)/2α

∫
D[Aµ]δ(G[Aµ]− c(x))eiS[A,J]

= N
∫
D[Aµ]eiS[A,J]e−i

∫
d4xG2[Aµ]/2α (2.30)

For example of G[Aµ] = ∂µA
µ, the gauge field action functional will appear in

the form

S0[Aµ] =
1

2

∫
d4xAµ(x)(∂2gµν − ∂µ∂ν)Aν(x)− 1

2α

∫
d4x(∂µA

µ)2(x)

=
1

2

∫
d4xAµ(x)

(
∂2gµν −

α− 1

α
∂µ∂ν

)
Aν(x) (2.31)

=
1

2

∫
d4xd4yAµ(x)∆−1(x, y;α)µνA

ν(y) (2.32)

∆−1(x, y;α)µν =

(
∂2gµν −

α− 1

α
∂µ∂ν

)
δ(4)(x− y) (2.33)

And finally we get

Z0[J ] = N ′e i2
∫
d4xd4yJµ(a)∆µν(x,y;α)Jν(y) (2.34)

with a gauge fixing parameter α.
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2.3 Functional quantization of non-abelian gauge field

2.4 BRST symmetry
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