6 Effective Action

We do the formulation real scalar field function ¢(z), with the field action
functional S[¢], application to other field can be done easily.

6.1 Getting the effective action

We start from the generating functional
_ / Dlg|eiStei+i S di@)o() (6.1)

which is used to generate n-point correlation function
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In diagram representation C(zq,...,x,) contains all connected and discon-
nected diagrams. However we can define the generating functional that gen-
erate only the connected diagram as
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Let us determine
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As we observe from (6.4) (¢(z)) is a classical value, and let us define
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We can see that ®(z) is a functional of j(x). Practically we can apply
Legendre transformation of W{j] into a new functional of ®(x) as
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It is called effective action. Let us determine
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Therefore the effective action T'|®] is the quantity that generates the quan-
tum corrected classical equation of motion by being extremized with respect to
variation of the vacuum expectation value of the field.

By inversion, we can recover W[j] in the form
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So that we can have the relation between effective action I'|®] and action
function S[¢y] at classical level as
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Therefore one can say that
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Apply with functional derivative, we will have
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At the quantum level, we also have the equality
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6.2 Effective potential

Generally, one can write the functional form of the effective action in the
form

I[®] = Z/.../F(")(:pl,...,xn)q)(:vl)...q)(xn) (6.16)

where
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For example case of the real scalar field action, with minimal potential appear
at ¢ = 0, we have
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We now look for the quantum corrections within the effective action, by doing
Taylor’s expansion of the quantum field around its classical value with some
quantum fluctuation as
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So that
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Using identity
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From (6.15), we will observe that

I[#] = S[ou] + STrnS"[0a) (6.25)
Now let determine S”[¢], from (6.18) we have
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From (6.25), we will have
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We can define the effective potential in the form
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6.3 Loop expansion

Let us determine
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The first part is the usual Coleman-Weinberg potential. For the second part,
let us determine
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Note that A(z,y) = ——(z,y), for n =1 term we have
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Similarly, for n = 2 term we have
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For n = 3 term we have
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For scalar ¢?-interacting model
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The corresponding diagrams of the loop expansion of the effective potential

are
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Figure 6.1:

6.4 Heat kernel

In order to calculate Coleman-Weinberg potential.



