
1 Motivations

1.1 Poincare symmetry of quantum field theory

1.2 Poincare algebra

Poincare symmetry is spacetime symmetry, consist of translation and Lorentz
rotation symmetries. Its group compose of a set of generators {Pµ,Mµν}
satisfy the Poincare algebra

[Pµ, Pν ] = 0 (1.1)

[Mµν ,Mρσ] = i(gµρMνσ + gνσMµρ − gµσMνρ − gνρMµσ) (1.2)

[Mµν , Pρ] = igµρPν − igνρPµ (1.3)

The representation of Poincare algebra is determined from its twp Casimir
operators

Pµ → C1 = P 2, |m2(E)〉 (1.4)

Wµ =
1

2
εµνρσP

νMρσ → C2 = W 2, |s(λ)〉 (1.5)

with eigen-values of mass squared m2 for massive (or energy E for massless)
particle, and spin s for massive (or helicity λ for massless) particle. A state
of quantum particle is represented by direct products of eigen-states of these
Casimir, i.e., |p〉 = |m2(E), s(λ)〉 = |m2(E)〉 ⊗ |s(λ)〉, with p2 = m2.

Let φ(x) is the quantum field operator, its Fourier expansion is

φ(x) =

∫
d3p

(2π)32Ep

(
a(p)e−ip·x + a†eip·x

)
(1.6)

π(x) = ∂0φ(x) = − i
2

∫
d3p

(2π)3
(
a(p)e−ip·x − a†eip·x

)
(1.7)

[φ(x), π(y)]x0=y0 = iδ(3)(x− y) (1.8)

→
[
a(p), a†(p′)

]
= (2π)32Epδ

(3)(p− p′) (1.9)

a(p)|0〉 = 0, a†(p)|0〉 = |p〉 (1.10)

where |p〉 is the one-particle Poincare invariant quantum state.
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1.3 Gauge symmetry of gauge field theory

Let Aµ(x) is a gauge field, with Fµν = ∂µAν−∂νAµ is its field strength tensor.
Its gauge symmetry is determined from a transformation

Aµ → A′µ = Aµ + ∂µχ, F ′µν = Fµν (1.11)

where χ(x) is any real scalar function. A matter-coupled gauge field theory
is determined from the Lagrangian

L = (Dµφ)∗(Dµφ)−m2φ∗φ− 1

4
FµνF

µν (1.12)

Dµφ = (∂µ + iqAµ)φ (1.13)

Let us the local unitary transformation on a scalar field, together the gauge
transformation of a vector field

φ(x)→ φ′(x) = eiα(x)φ(x) (1.14)

Aµ(x)→ A′µ(x)− i

q
∂µα(x) (1.15)

we will get the invariant Lagrangian of (1.12).
Let G be a gauge group, and its generator is denoted as g = eiα. In case

of α is a real constant, G is called global U(1) symmetry, when α(x) is a real
scalar function, G is called local U(1) symmetry. In more general case

α(x) = αa(x)ta,
[
ta, tb

]
= ifabctc, when a, b, c = 1, 2, ..., N2 − 1 (1.16)

In this case G is called SU(N) local symmetry, where {ta} is a set of its
generators satisfy the su(N) Lie algebra, with {fabc} is a set of structure
constants. Note that for N > 1, the field φ(x) must be matrix-valued func-
tion, i.e., N = 2 the field φ is two-components column matrix and spinor.

1.4 The Coleman-Mandula ”No-Go” theorem

In the gauge field theory of the standard model, we found that the gauge
symmetry results to a set of degenerate mass multiplet, with a particle num-
ber of N2−1. In the formulation of unified field theory, more set of particles
is required into the theory, so the symmetry extension is looked for for the
final theory.
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Coleman and Mandula gave a constraint theorem on this criteria by sim-
ple stated that the symmetry of the standard model theory (of particle with
mass and spin) consist of a direct production of spacetime symmetry and
gauge symmetry, where their generators are all bosonics. It cannot be ex-
tended by a symmetry with tensorial generators except for a symmetry with
scalar generators. The hidden reason is that we do not particle with spin
higher than 2 in nature.

1.5 Hierarchy problem and naturalness

A hierarchy problem occurs when the fundamental value of some physical
parameter, such as a coupling constant or a mass, in some Lagrangian is
vastly different from its effective value, which is the value that gets measured
in an experiment. This happens because the effective value is related to
the fundamental value by a prescription known as renormalization, which
applies corrections to it. Typically the renormalized value of parameters are
close to their fundamental values, but in some cases, it appears that there
has been a delicate cancellation between the fundamental quantity and the
quantum corrections. The prove of this theorem based on a few assumptions
and applied to the invariant of the S-matrix.

The naturalness is the property that the dimensionless ratios between
free parameters or physical constants appearing in a physical theory should
take values ”of order 1” and that free parameters are not fine-tuned. But its
has been observed that some parameters of the standard model theory vary
by many orders of magnitude, and which require extensive ”fine-tuning” of
their current values of the models concerned.

More particles, out of the standard model particles, are required for the
solution of loop corrections in the renormaliztion process.

1.6 The birth of supersymmetry

Some histories of supersymmetry was appear in the talk of P. Ramond in
2016 with a Tile of Too Beautiful to Ignore.
(https://cgc.physics.miami.edu/Miami2016/Ramond.pdf)

One can say that the significant idea of supersymmetry came from Yu A.
Gol’fan and E.P. Likhtman (1971). They proposed the extension of spacetime
symmetry beyond Poincare symmetry with a symmetric group of fermionic
generators. This idea was later extended by R. Haag, J.  Lopuszański, and
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M. Sohnius (1975), which become the basic of supersymmetry formulation
up to today.

Another major step of development given by A.Salam and J. Strathdee
(1975), they induced supercoordinates of the superspace in order for doing
the formulation of supersymmetric field theory.

1.7 Supersymmetric quantum mechanics

Here is an introduction to the idea of supersymmetry observed from the
elementary quantum mechanics evaluation. First let us define the harmonic
super-oscillator with Hamiltonian

H = a†a+ c†c, [a, a†] = 1, {c, c†} = 1 (1.17)

Let |nBnF 〉 is its eigen-basis, such that nB = {0, 1, 2, ...} and nF = {0, 1},
and

a|nbnF 〉 =
√
nB|nb − 1, nF 〉, a|0nF 〉 = 0 (1.18)

a†|nBnF 〉 =
√
nB + 1|nB + 1, nF 〉 (1.19)

c|nB0〉 = 0, c†|nB0〉 = |nB1〉 (1.20)

c|nB1〉 = |nB0〉, c†|nB1〉 = 0 (1.21)

and H|nBnF 〉 = (nB + nF )|nBnF 〉 (1.22)

Next we define

Q+ = ac†, Q− = ca† (1.23)

We can observe that

Q+|nBnF 〉 ∼ |nB − 1, nF + 1〉 (1.24)

Q−|nBnF 〉 ∼ |nB + 1, nF − 1〉 (1.25)

and [H,Q±] = 0 (1.26)

Note that Q± are fermionic operators, according to summation theory, they
change boson to fermion and vice versa. We can extend (1.17) to the form

H = a†a+ c†c+ a†ac†c− c†ca†a
= {ac†, ca†} = {Q+, Q−} (1.27)

→ [H,Q±] = 0 (1.28)
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Now we define

Q1 = Q+ +Q−, Q2 = −i(Q+ −Q−) (1.29)

H = Q2
1 = Q2

2 (1.30)

[H,Qi] = 0, {Qi, Qj} = 2Hδij (1.31)

This becomes the basic of supersymmetry algebra.
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