2 Supersymmetry Algebra and Representations

2.1 Weyl spinors and spinor indices

Massless Dirac equation

$$
\begin{equation*}
i \not \partial \psi(x)=0 \tag{2.1}
\end{equation*}
$$

where $\not \partial=\gamma^{\mu} \partial_{\mu}$, and γ^{μ} is Dirac gamma matrix. We cannot solve this equation within Dirac representation of γ^{μ}, since we cannot make the different between the positive energy $U(k)$ spinor and negative energy $V(k)$ spinor. Anyway, we can have different solutions for U and V spinors when using Weyl representation of γ^{μ}, i.e.,

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu} \tag{2.2}\\
\bar{\sigma}^{\mu} & 0
\end{array}\right), \sigma^{\mu}=(1, \vec{\sigma}), \bar{\sigma}^{\mu}=(1,-\vec{\sigma})
$$

For positive energy solution, $\psi^{(+)}(x) \sim U(k) e^{-i k \cdot x}$, then we have (2.1)

$$
\begin{align*}
k_{\mu} \gamma^{\mu} U(k) & =0 \tag{2.3}\\
U=\binom{u_{1}}{u_{2}} \rightarrow\left(\begin{array}{cc}
0 & k_{\mu} \sigma^{\mu} \\
k_{\mu} \bar{\sigma}^{\mu} & 0
\end{array}\right)\binom{u_{1}}{u_{2}} & =0 \tag{2.4}\\
\left(k^{0}-\vec{k} \cdot \vec{\sigma}\right) u_{2}(k)=0 \rightarrow k^{0}(1-\hat{h}) u_{2}(k) & =0 \tag{2.5}\\
\left.\left(k^{0}+\vec{k} \cdot \vec{\sigma}\right) u_{1}(k)=0 \rightarrow k^{0}(1+\hat{h}) u_{(} k\right) & =0 \tag{2.6}
\end{align*}
$$

where $\hat{h}=\frac{\vec{k} \cdot \vec{\sigma}}{|\vec{k}|}$ is helicity operator, with $k^{2}=0$. (2.5) shows that u_{2} is right handedness spinor $(\hat{h}=+1)$, while (2.6) shows that u_{1} is left handedness spinor $(\hat{h}=-1)$. let us denote

$$
\begin{array}{ll}
u_{2}=\chi_{\alpha}, \alpha=1,2 & \text { right handedness spinor basis } \\
u_{1}=\bar{\eta}^{\dot{\alpha}}, \quad \dot{\alpha}=\dot{1}, \dot{2} & \text { left handedness spinor basis } \\
& \psi_{D}^{(+)} \sim\binom{\bar{\eta}^{\dot{\alpha}}}{\chi_{\alpha}} e^{-i k \dot{x}} \tag{2.9}
\end{array}
$$

Note that $\alpha, \beta, \ldots=1,2$ and $\dot{\alpha}, \dot{\beta}, \ldots=\dot{1} \dot{2}$ are called spinor indices.
For the negative energy solution, $\psi^{(-)}(x) \sim V(k) e^{i k \cdot x}$, we will have

$$
\begin{equation*}
\psi_{D}^{(-)} \sim\binom{\chi_{\alpha}}{\bar{\eta}^{\dot{\alpha}}} e^{i k \cdot x} \tag{2.10}
\end{equation*}
$$

In order to get a full spinor expression of Dirac equation, we will also index the gamma matrix as in the following

$$
\begin{align*}
(2.2) \rightarrow \sigma^{\mu}=\left(\sigma^{\mu}\right)^{\dot{\alpha} \beta}, & \bar{\sigma}^{\mu}=\left(\bar{\sigma}^{\mu}\right)_{\alpha \dot{\beta}} \tag{2.11}\\
(2.3) \rightarrow k_{\mu}\left(\sigma^{\mu}\right)^{\dot{\alpha} \beta} \chi_{\beta}=0, & k_{\mu}\left(\bar{\sigma}^{\mu}\right)_{\alpha \dot{\beta}} \bar{\chi}^{\dot{\beta}}=0 \tag{2.12}
\end{align*}
$$

When we work with spinors and fermionic opertors, assigned with spinor indices, we will obey the following rule

$$
\begin{align*}
\left(\chi_{\alpha}\right)^{\dagger}=\bar{\chi}_{\dot{\alpha}}, & \left(\bar{\chi}^{\dot{\alpha}}\right)^{\dagger}=\chi^{\alpha} \tag{2.13}\\
\chi^{\alpha}=\epsilon^{\alpha \beta} \chi_{\beta}, \chi_{\alpha}=\epsilon_{\alpha \beta} \chi^{\beta}, & \bar{\chi}^{\dot{\alpha}}=\bar{\epsilon}^{\dot{\alpha} \dot{\beta}} \bar{\chi}_{\dot{\beta}}, \bar{\chi}_{\dot{\alpha}}=\bar{\epsilon}_{\dot{\alpha} \dot{\beta}} \bar{\chi}^{\dot{\beta}} \tag{2.14}\\
1=\epsilon^{12}=-\epsilon^{21}=\epsilon_{21}=-\epsilon_{12}, & 1=\bar{\epsilon}^{\dot{1} \dot{2}}=-\bar{\epsilon}^{\dot{2} \dot{1}}=\bar{\epsilon}_{\dot{2} \dot{1}}=-\bar{\epsilon}_{\dot{1} \dot{2}} \tag{2.15}
\end{align*}
$$

Note that Majorana is real spinor, it expression in term of Weyl spinor will be

$$
\begin{equation*}
\psi_{M} \sim\binom{\bar{\chi}^{\dot{\alpha}}}{\chi_{\alpha}} e^{-i k \cdot x} \tag{2.16}
\end{equation*}
$$

2.2 Spinor representation of group

From a Lorentz transformation $x^{\mu} \rightarrow x^{\mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$, its spinor representation is denote as

$$
\begin{equation*}
D\left[\Lambda_{S}\right]=\exp \left(\frac{i}{2} \omega_{\mu \nu} S^{\mu \nu}\right), S^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] \rightarrow(4 x 4)-\text { matrix } \tag{2.17}
\end{equation*}
$$

Its action on Dirac spinor is

$$
\begin{equation*}
\psi^{\prime a}(x)=S[\Lambda]^{a}{ }_{b} \psi^{b}\left(\Lambda^{-1} x\right), \quad a, b=1,2,3,4 \tag{2.18}
\end{equation*}
$$

Its action on Weyl spinors are

$$
\begin{align*}
\chi_{\alpha}^{\prime}(x) & =S[\Lambda]_{\alpha}{ }^{\beta} \chi_{\beta}\left(\Lambda^{-1} x\right) \tag{2.19}\\
\bar{\chi}^{\prime \dot{\alpha}}(x) & =S[\Lambda]^{\dot{\alpha}}{ }_{\dot{\beta}} \bar{\chi}^{\dot{\beta}}\left(\Lambda^{-1} x\right) \tag{2.20}
\end{align*}
$$

where

$$
\begin{align*}
& S[\Lambda]_{\alpha}^{\beta}=\exp \left(\frac{i}{2} \omega_{\mu \nu}\left(\sigma^{\mu \nu}\right)_{\alpha}{ }^{\beta}\right),\left(\sigma^{\mu \nu}\right)_{\alpha}{ }^{\beta}=-\frac{i}{4}\left(\sigma^{\mu} \bar{\sigma}^{\nu}-\sigma^{\mu} \bar{\sigma}^{\mu}\right)_{\alpha}{ }^{\beta} \tag{2.21}\\
& S[\Lambda]_{\dot{\beta}}^{\dot{\alpha}}=\exp \left(\frac{i}{2} \omega_{\mu \nu}\left(\bar{\sigma}^{\mu \nu}\right)^{\dot{\alpha}}{ }_{\dot{\beta}}\right),\left(\bar{\sigma}^{\mu \nu}\right)^{\dot{\alpha}}{ }_{\dot{\beta}}=-\frac{i}{4}\left(\bar{\sigma}^{\mu} \sigma^{\nu}-\bar{\sigma}^{\nu} \sigma^{\mu}\right)^{\dot{\alpha}}{ }_{\dot{\beta}} \tag{2.22}
\end{align*}
$$

2.3 Super-Poincare algebra

Poincare algebra, the algebra of bosonic operators P_{μ} and $M_{\mu \nu}$. The N-supersymmetry extension is done by introduction of the 2 N -fermionic operators, written in form of Weyl spinor, as

$$
\begin{equation*}
Q^{A}=\binom{\bar{Q}^{A \dot{\alpha}}}{Q_{\alpha}^{A}}, \quad A=1,2, \ldots, N \tag{2.23}
\end{equation*}
$$

For convenient, the $\mathrm{N}=1$ supersymmetric algebra are determined to be in the form

$$
\begin{array}{r}
{\left[Q_{\alpha}, P^{\mu}\right]=0,\left[\bar{Q}_{\dot{\alpha}}, P^{\mu}\right]=0} \\
{\left[Q_{\alpha}, M^{\mu \nu}\right]=\left(\sigma^{\mu \nu}\right)_{\alpha}^{\beta} Q_{\beta}} \\
{\left[\bar{Q}^{\dot{\alpha}}, M^{\mu \nu}\right]=\left(\bar{\sigma}^{\mu \nu}\right)^{\dot{\alpha}}{ }_{\dot{\beta}} \bar{Q}^{\dot{\beta}}} \\
\left\{Q_{\alpha}, Q_{\beta}\right\}=0 \\
\left\{\bar{Q}^{\dot{\alpha}}, \bar{Q}^{\dot{\beta}}\right\}=0 \\
\left\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\right\}=2 \delta^{A B}\left(\sigma^{\mu}\right)_{\alpha \dot{\beta}} P_{\mu} \tag{2.29}
\end{array}
$$

These are called $N=1$ super-Poincare algebra.
The two Casimir operators of this algebra can be constructed from P^{μ} but not from $W^{\mu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} P_{\nu} M_{\rho \sigma}$. Its extension with Q can be done in the form of a tensor

$$
\begin{array}{r}
C_{\mu \nu}=B_{\mu} P_{\nu}-B_{\nu} P_{\mu}, \text { where } B_{\mu}=W_{\mu}+\frac{1}{2} X_{\mu} \\
\text { and } X_{\mu}=\frac{1}{2} \bar{Q} \gamma^{\mu} \gamma^{5} Q \\
\rightarrow\left[C^{2}, Q\right]=0,\left[C^{2}, P^{\mu}\right]=0,\left[C^{2}, M^{\mu \nu}\right]=0 \tag{2.32}
\end{array}
$$

Let us determine the eigen-value/state of C^{2}, especially from the massive particle with $P^{\mu}=(m, 0,0,0)$ in its rest frame, we will have

$$
\begin{array}{r}
C^{2}=2 B_{\mu} P_{\nu} B^{\mu} P^{\nu}-2 B_{\mu} P_{\nu} B^{\nu} P^{\mu} \\
=2 m^{2} B_{\mu} B^{\mu}-2 m^{2} B_{0}^{2} \\
=2 m^{2} B_{k} B^{k} \tag{2.33}
\end{array}
$$

$$
\begin{equation*}
\text { Since } B_{k}=W_{k}+\frac{1}{4} X_{k}=m S_{k}+\frac{1}{8} \bar{Q} \gamma_{k} \gamma^{5} Q \equiv m J_{k} \tag{2.34}
\end{equation*}
$$

$$
\begin{equation*}
\rightarrow\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k}, \text { so that } C^{2}=2 m^{4} J_{k} J^{k} \tag{2.35}
\end{equation*}
$$

Note that \vec{J} is called superspin. The representation of C^{2} is determined from the eigen-value/state of J^{2}. Let us assign the eigen-state/value of J^{2} as

$$
\begin{array}{r}
J^{2}\left|j, j_{3}\right\rangle=j(j+1)\left|j, j_{3}\right\rangle, \quad j=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots \\
j_{3}=-j,-(j-1), \ldots,(j-1), j \tag{2.37}
\end{array}
$$

Then $C^{2}\left|m ; j, j_{3}\right\rangle=2 m^{4} j(j+1)\left|m ; j, j_{3}\right\rangle$

$2.4 \mathrm{~N}=1$ supersymmetry representations

The representation is determined from the anti-commutation relation (2.29),

$$
\left\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\right\}=2\left(\sigma^{\mu}\right)_{\alpha \dot{\beta}} P_{\mu}
$$

for the cases of massive and massless particle states.

2.4.1 Massless representation

In the light-front frame of massless particle of energy E, we have $p^{\mu}=(E, 0,0, E)$. This results to $P^{2}=0$ and $C^{2}=0$. From (2,29), we will have

$$
\begin{array}{r}
\left\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\right\}=2 E\left(\sigma^{0}\right)_{\alpha \dot{\beta}}+2 E\left(\sigma^{3}\right)_{\alpha \dot{\beta}}=4 E\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)_{\alpha \dot{\beta}} \\
\rightarrow\left\{Q_{1}, \bar{Q}_{\dot{1}}\right\}=4 E \\
\text { Define } a=\frac{Q_{1}}{\sqrt{4 E}}, \quad a^{\dagger}=\frac{\bar{Q}_{\dot{i}}}{\sqrt{4 E}} \rightarrow\left\{a, a^{\dagger}\right\}=1 \tag{2.42}
\end{array}
$$

From (2.34), we will observe that

$$
\begin{array}{r}
{\left[a, J^{3}\right]=\frac{1}{2}\left(\sigma^{3}\right)_{11}=\frac{1}{2} a \rightarrow a J^{3}-J^{3} a=\frac{1}{2} a} \\
{\left[a^{\dagger}, J^{3}\right]=-\frac{1}{2} a^{\dagger}} \\
J^{3}(a \mid E, \lambda>)=\left(J^{3} a\right) \mid E, \lambda>=\left(\left(\lambda-\frac{1}{2}\right)(a \mid E, \lambda>)\right. \\
a|E, \lambda>\sim| E, \lambda-\frac{1}{2}> \\
\text { Similarly } a^{\dagger}|E, \lambda>\sim| E, \lambda+\frac{1}{2}> \tag{2.47}
\end{array}
$$

Let us start to construct a set of super-multiplets by first assign a state of minimum helicity $\mid \Omega>$, where it is known as Clifford vacuum state, so that

$$
\begin{align*}
& \left|\Omega>=|E, \lambda>, a| \Omega>=0, a^{\dagger}\right| \Omega>=\mid E, \lambda+1 / 2> \tag{2.48}\\
& \text { Super - multiplets } \rightarrow|E, \pm \lambda>,| E, \pm(\lambda+1 / 2)> \tag{2.49}
\end{align*}
$$

according PCT conjugate. For examples:

- $\lambda=0$ is chiral super-multiplete $\rightarrow\{|E, 0>| E,, \pm 1 / 2>\}$
- $\lambda=1 / 2$ is vector/gauge super-multiplets $\rightarrow\{|E, \pm 1 / 2>| E,, \pm 1>\}$
- $\lambda=3 / 2$ is gravity super-multiplets $\rightarrow\{|E, \pm 3 / 2>| E,, \pm 2>\}$

$\lambda=0$	$\lambda=1 / 2$
Higgs	Higgsion
selectron	electron
squark	quark

$\lambda=1 / 2$	$\lambda=1$
photino	photon
gluino	gluon
Wino, Zino	W, Z

$\lambda=3 / 2$	$\lambda=2$
gravitino	graviton

2.4.2 Massive representation

In the rest frame of a particle with mass m, we have $p^{\mu}=(m, 0,0,0)$, then we have

$$
\begin{array}{r}
\left\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\right\}=2 m\left(\sigma^{0}\right)_{\alpha \dot{\beta}}=2 m\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)_{\alpha \dot{\beta}} \rightarrow\left\{Q_{1,2}, \bar{Q}_{\dot{1}, \dot{2}}\right\}=2 m \\
 \tag{2.51}\\
\text { Define } a_{1,2}=\frac{Q_{1,2}}{\sqrt{2 m}}, a_{1,2}^{\dagger}=\frac{\bar{Q}_{\dot{1}, \dot{2}}}{\sqrt{2 m}} \rightarrow\left\{a_{1,2}, a_{1,2}^{\dagger}\right\}=1
\end{array}
$$

Now let us define the Clifford vacuum state $|\Omega>=| m ; j, j_{3}>$, and $a_{1,2} \mid \Omega>=0$. Note that

$$
\begin{equation*}
J_{3}\left|\Omega>=S_{3}\right| \Omega+\frac{1}{4} \bar{Q} \bar{\sigma}_{i} Q\left|\Omega>=S_{3}\right| \Omega>\rightarrow j_{3}=s_{3}=1 / 2 \tag{2.52}
\end{equation*}
$$

This means that the SUSY operators when act on state with superspin $j=y$ will result to states with superspin $j=y \pm 1 / 2$. Similar to $(2.43,44)$, we observe that

$$
\begin{align*}
{\left[Q, J^{3}\right]=\frac{1}{2} \sigma^{3} Q \rightarrow\left[a_{1}, J^{3}\right] } & =\frac{1}{2} a_{1},\left[a_{2}, J^{3}\right]=-\frac{1}{2} a_{2} \tag{2.53}\\
{\left[\bar{Q}, J^{2}\right]=-\frac{1}{2} \sigma^{3} \bar{Q} \rightarrow\left[a_{1}^{\dagger}, J^{2}\right] } & =-\frac{1}{2} a_{1}^{\dagger},\left[a_{2}^{\dagger}, J^{2}\right]=\frac{1}{2} a_{2}^{\dagger} \tag{2.54}
\end{align*}
$$

This means that a_{1}, a_{2}^{\dagger} lower j_{3} by $1 / 2$, and a_{2}, a_{1}^{\dagger} raise j_{3} by $1 / 2$.
Let us start with the Clifford vacuum $|\Omega>=| j, j_{3}>$, where the m is hidden for convenient. The massive super-multiplet consist of

$$
\begin{align*}
|\Omega>=| j=y, j_{3}>, & 2 j+1 \tag{2.55}\\
a_{1}^{\dagger}\left|j, j_{3}>, a_{2}^{\dagger}\right| j, j_{3}>\rightarrow \mid j \pm 1 / 2, j_{3}>, & 2(j \pm 1 / 2)+1 \tag{2.56}\\
a_{1}^{\dagger} a_{2}^{\dagger}\left|j, j_{3}>\rightarrow\right| j, j_{3}>, & 2 j+1 \tag{2.57}
\end{align*}
$$

For examples

- $j=0$ chiral super-multiplet:

$$
\phi, \phi^{\prime}, \psi_{M}
$$

- $j=1 / 2$ vector super-multiplet: 2 fermionic states (Dirac) +1 scalar +1 vector

$$
\psi_{D}, \psi_{D}^{\prime}, \phi, P_{\mu}
$$

Note that in all super-multiplets, number of bosonic and fermionic degree of freedom are equal, i.e., $n_{B}=n_{F}$, the proof will placed later.

