
2 Supersymmetry Algebra and Representations

2.1 Weyl spinors and spinor indices

Massless Dirac equation

i/∂ψ(x) = 0 (2.1)

where /∂ = γµ∂µ, and γµ is Dirac gamma matrix. We cannot solve this equation
within Dirac representation of γµ, since we cannot make the different between
the positive energy U(k) spinor and negative energy V (k) spinor. Anyway, we
can have different solutions for U and V spinors when using Weyl representation
of γµ, i.e.,

γµ =

(
0 σµ

σ̄µ 0

)
, σµ = (1, ~σ), σ̄µ = (1,−~σ) (2.2)

For positive energy solution, ψ(+)(x) ∼ U(k)e−ik·x, then we have (2.1)

kµγ
µU(k) = 0 (2.3)

U =

(
u1
u2

)
→
(

0 kµσ
µ

kµσ̄
µ 0

)(
u1
u2

)
= 0 (2.4)

(k0 − ~k · ~σ)u2(k) = 0→ k0(1− ĥ)u2(k) = 0 (2.5)

(k0 + ~k · ~σ)u1(k) = 0→ k0(1 + ĥ)u(k) = 0 (2.6)

where ĥ =
~k·~σ
|~k|

is helicity operator, with k2 = 0. (2.5) shows that u2 is right

handedness spinor (ĥ = +1), while (2.6) shows that u1 is left handedness spinor

(ĥ = −1). let us denote

u2 = χα, α = 1, 2 right handedness spinor basis (2.7)

u1 = η̄α̇, α̇ = 1̇, 2̇ left handedness spinor basis (2.8)

ψ
(+)
D ∼

(
η̄α̇

χα

)
e−ikẋ (2.9)

Note that α, β, ... = 1, 2 and α̇, β̇, ... = 1̇2̇ are called spinor indices.
For the negative energy solution, ψ(−)(x) ∼ V (k)eik·x, we will have

ψ
(−)
D ∼

(
χα
η̄α̇

)
eik·x (2.10)

In order to get a full spinor expression of Dirac equation, we will also index
the gamma matrix as in the following

(2.2)→ σµ = (σµ)α̇β , σ̄µ = (σ̄µ)αβ̇ (2.11)

(2.3)→ kµ(σµ)α̇βχβ = 0, kµ(σ̄µ)αβ̇χ̄
β̇ = 0 (2.12)
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When we work with spinors and fermionic opertors, assigned with spinor
indices, we will obey the following rule

(χα)† = χ̄α̇, (χ̄α̇)† = χα (2.13)

χα = εαβχβ , χα = εαβχ
β , χ̄α̇ = ε̄α̇β̇χ̄β̇ , χ̄α̇ = ε̄α̇β̇χ̄

β̇ (2.14)

1 = ε12 = −ε21 = ε21 = −ε12, 1 = ε̄1̇2̇ = −ε̄2̇1̇ = ε̄2̇1̇ = −ε̄1̇2̇ (2.15)

Note that Majorana is real spinor, it expression in term of Weyl spinor will be

ψM ∼
(
χ̄α̇

χα

)
e−ik·x (2.16)

2.2 Spinor representation of group

From a Lorentz transformation xµ → x′µ = Λµνx
ν , its spinor representation is

denote as

D[ΛS ] = exp

(
i

2
ωµνS

µν

)
, Sµν =

i

4
[γµ, γν ]→ (4x4)−matrix (2.17)

Its action on Dirac spinor is

ψ′a(x) = S[Λ]abψ
b(Λ−1x), a, b = 1, 2, 3, 4 (2.18)

Its action on Weyl spinors are

χ′α(x) = S[Λ]α
βχβ(Λ−1x) (2.19)

χ̄′α̇(x) = S[Λ]α̇β̇χ̄
β̇(Λ−1x) (2.20)

where

S[Λ]α
β = exp

(
i

2
ωµν(σµν)α

β

)
, (σµν)α

β = − i
4

(σµσ̄ν − σµσ̄µ)α
β (2.21)

S[Λ]α̇β̇ = exp

(
i

2
ωµν(σ̄µν)α̇β̇

)
, (σ̄µν)α̇β̇ = − i

4
(σ̄µσν − σ̄νσµ)α̇β̇ (2.22)

2.3 Super-Poincare algebra

Poincare algebra, the algebra of bosonic operators Pµ andMµν . The N-supersymmetry
extension is done by introduction of the 2N-fermionic operators, written in form
of Weyl spinor, as

QA =

(
Q̄Aα̇

QAα

)
, A = 1, 2, ..., N (2.23)
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For convenient, the N=1 supersymmetric algebra are determined to be in the
form

[Qα, P
µ] = 0, [Q̄α̇, P

µ] = 0 (2.24)

[Qα,M
µν ] = (σµν)α

βQβ (2.25)[
Q̄α̇,Mµν

]
= (σ̄µν)α̇β̇Q̄

β̇ (2.26)

{Qα, Qβ} = 0, (2.27)

{Q̄α̇, Q̄β̇} = 0 (2.28)

{Qα, Q̄β̇} = 2δAB(σµ)αβ̇Pµ (2.29)

These are called N=1 super-Poincare algebra.
The two Casimir operators of this algebra can be constructed from Pµ but

not from Wµ = 1
2ε
µνρσPνMρσ. Its extension with Q can be done in the form of

a tensor

Cµν = BµPν −BνPµ, where Bµ = Wµ +
1

2
Xµ (2.30)

and Xµ =
1

2
Q̄γµγ5Q (2.31)

→ [C2, Q] = 0, [C2, Pµ] = 0, [C2,Mµν ] = 0 (2.32)

Let us determine the eigen-value/state of C2, especially from the massive par-
ticle with Pµ = (m, 0, 0, 0) in its rest frame, we will have

C2 = 2BµPνB
µP ν − 2BµPνB

νPµ

= 2m2BµB
µ − 2m2B2

0

= 2m2BkB
k (2.33)

Since Bk = Wk +
1

4
Xk = mSk +

1

8
Q̄γkγ

5Q ≡ mJk (2.34)

→ [Ji, Jj ] = iεijkJk, so that C2 = 2m4JkJ
k (2.35)

Note that ~J is called superspin. The representation of C2 is determined from
the eigen-value/state of J2. Let us assign the eigen-state/value of J2 as

J2|j, j3〉 = j(j + 1)|j, j3〉, j = 0,
1

2
, 1,

3

2
, 2, ... (2.36)

j3 = −j,−(j − 1), ..., (j − 1), j (2.37)

Then C2|m; j, j3〉 = 2m4j(j + 1)|m; j, j3〉 (2.38)

and simultaneously P 2|m; j, j3〉 = m2|m; j, j3〉 (2.39)

2.4 N=1 supersymmetry representations

The representation is determined from the anti-commutation relation (2.29),

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ,

for the cases of massive and massless particle states.
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2.4.1 Massless representation

In the light-front frame of massless particle of energy E, we have pµ = (E, 0, 0, E).
This results to P 2 = 0 and C2 = 0. From (2,29), we will have

{Qα, Q̄β̇} = 2E(σ0)αβ̇ + 2E(σ3)αβ̇ = 4E

(
1 0
0 0

)
αβ̇

(2.40)

→ {Q1, Q̄1̇} = 4E (2.41)

Define a =
Q1√
4E

, a† =
Q̄1̇√
4E
→ {a, a†} = 1 (2.42)

From (2.34), we will observe that

[a, J3] =
1

2
(σ3)11 =

1

2
a→ aJ3 − J3a =

1

2
a (2.43)[

a†, J3
]

= −1

2
a† (2.44)

J3(a|E, λ >) = (J3a)|E, λ >= ((λ− 1

2
)(a|E, λ >) (2.45)

a|E, λ >∼ |E, λ− 1

2
> (2.46)

Similarly a†|E, λ >∼ |E, λ+
1

2
> (2.47)

Let us start to construct a set of super-multiplets by first assign a state of
minimum helicity |Ω >, where it is known as Clifford vacuum state, so that

|Ω >= |E, λ >, a|Ω >= 0, a†|Ω >= |E, λ+ 1/2 > (2.48)

Super−multiplets→ |E,±λ >, |E,±(λ+ 1/2) > (2.49)

according PCT conjugate. For examples:

• λ = 0 is chiral super-multiplete → {|E, 0 >, |E,±1/2 >}

• λ = 1/2 is vector/gauge super-multiplets → {|E,±1/2 >, |E,±1 >}

• λ = 3/2 is gravity super-multiplets → {|E,±3/2 >, |E,±2 >}

λ = 0 λ = 1/2
Higgs Higgsion

selectron electron
squark quark

λ = 1/2 λ = 1
photino photon
gluino gluon

Wino, Zino W,Z

λ = 3/2 λ = 2
gravitino graviton
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2.4.2 Massive representation

In the rest frame of a particle with mass m, we have pµ = (m, 0, 0, 0), then we
have

{Qα, Q̄β̇} = 2m(σ0)αβ̇ = 2m

(
1 0
0 1

)
αβ̇

→ {Q1,2, Q̄1̇,2̇} = 2m (2.50)

Define a1,2 =
Q1,2√

2m
, a†1,2 =

Q̄1̇,2̇√
2m
→ {a1,2, a†1,2} = 1 (2.51)

Now let us define the Clifford vacuum state |Ω >= |m; j, j3 >, and a1,2|Ω >= 0.
Note that

J3|Ω >= S3|Ω +
1

4
Q̄σ̄iQ|Ω >= S3|Ω >→ j3 = s3 = 1/2 (2.52)

This means that the SUSY operators when act on state with superspin j = y
will result to states with superspin j = y±1/2. Similar to (2.43, 44), we observe
that [

Q, J3
]

=
1

2
σ3Q→

[
a1, J

3
]

=
1

2
a1,

[
a2, J

3
]

= −1

2
a2 (2.53)[

Q̄, J2
]

= −1

2
σ3Q̄→

[
a†1, J

2
]

= −1

2
a†1,

[
a†2, J

2
]

=
1

2
a†2 (2.54)

This means that a1, a
†
2 lower j3 by 1/2, and a2, a

†
1 raise j3 by 1/2.

Let us start with the Clifford vacuum |Ω >= |j, j3 >, where the m is hidden
for convenient. The massive super-multiplet consist of

|Ω >= |j = y, j3 >, 2j + 1 (2.55)

a†1|j, j3 >, a
†
2|j, j3 >→ |j ± 1/2, j3 >, 2(j ± 1/2) + 1 (2.56)

a†1a
†
2|j, j3 >→ |j, j3 >, 2j + 1 (2.57)

For examples

• j = 0 chiral super-multiplet:

φ, φ′, ψM

• j = 1/2 vector super-multiplet: 2 fermionic states (Dirac) + 1 scalar + 1
vector

ψD, ψ
′
D, φ, Pµ

Note that in all super-multiplets, number of bosonic and fermionic degree of
freedom are equal, i.e., nB = nF , the proof will placed later.
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