2 Supersymmetry Algebra and Representations

2.1 Weyl spinors and spinor indices

Massless Dirac equation
igp(x) =0 (2.1)

where @ = ~+#0,,, and v* is Dirac gamma matrix. We cannot solve this equation
within Dirac representation of v*, since we cannot make the different between
the positive energy U (k) spinor and negative energy V (k) spinor. Anyway, we
can have different solutions for U and V spinors when using Weyl representation
of v i.e.,

= ( 0 “0” ) ot = (1,5), 0% = (1,-3) (2.2)
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For positive energy solution, 1(*)(z) ~ U(k)e~**, then we have (2.1)

kuy*U (k) =0 (2.3)
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where h = %‘T is helicity operator, with k2 = 0. (2.5) shows that us is right

handedness spinor (h = +1), while (2.6) shows that u; is left handedness spinor
(h = —1). let us denote

Uy = Xa, @ = 1,2 right handedness spinor basis (2.7)
up =70% a=1,2 left handedness spinor basis (2.8)
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Note that a, 8,... = 1,2 and &, 3, ... = 12 are called spinor indices.
For the negative energy solution, ¥(7) () ~ V(k)e** . we will have
P~ < ’gg )e”” (2.10)

In order to get a full spinor expression of Dirac equation, we will also index
the gamma matrix as in the following

(2.2) = o = (M), " = ("), (2.11)
(2.3) = k(0" %x5 =0, ku(6"),5%° =0 (2.12)



When we work with spinors and fermionic opertors, assigned with spinor
indices, we will obey the following rule

(xa) =xa,  (XH'=x" (2.13)
XY =€xp, Xa =X’ X* =X Xa = E5uX° (2.14)
l=e?= M =y = —6p, 1=e?=—l—e=—¢; (215)

Note that Majorana is real spinor, it expression in term of Weyl spinor will be

Vs ~ ( X )e—“” (2.16)
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2.2 Spinor representation of group

From a Lorentz transformation z# — z'# = A*,z", its spinor representation is
denote as

D[As] = exp (;wWS’“’) , SHY = i[fy“,fy”] — (424) — matriz (2.17)

Its action on Dirac spinor is
¢'(x) = SIA]%0 (A '2), a,b=1,2,3,4 (2.18)
Its action on Weyl spinors are
Xo(2) = S[A]a"xp(A ™ 2) (2.19)
X(@) = S 5P (A1) (2.20)
where

S[A]aﬂ = exp (;WMV(UI“/)QB> ) (Uuy)aﬁ - —i(o“@'” — U“E’“)aﬁ (221)

S[A% 5 = exp (;WW(UW)C‘B) L (@)% = —ﬁ(a“a” —5v0"),  (2.22)

2.3 Super-Poincare algebra

Poincare algebra, the algebra of bosonic operators P, and M,,,,. The N-supersymmetry
extension is done by introduction of the 2N-fermionic operators, written in form
of Weyl spinor, as

QA—<QAQ) A=1,2,..,N (2.23)
- Qﬁ ) — Ly Ly ey .



For convenient, the N=1 supersymmetric algebra are determined to be in the
form

[Qa, P*] =0, [Qa, P"] = (2.24)
[QmM””] (@)a BQB (2.25)
[Q%, M™] = (") ,Q (2.26)

{Qa, Qs} =0, (2.27)
{Q%.Q"} =0 (2.28)
{Qa, Qs} = 2677 ("), 4P (2.29)

These are called N=1 super-Poincare algebra.
The two Casimir operators of this algebra can be constructed from P* but

not from W# = e“"”"P M,.. Its extension with @) can be done in the form of
a tensor
1
Cuw = B,P, — B,P,, where B, =W, + §Xu (2.30)
1
and X, = §Q7“75Q (2.31)
— [C%,Q] =0, [C?,P"] =0, [C*, M"] =0 (2.32)

Let us determine the eigen-value/state of C?, especially from the massive par-
ticle with P* = (m,0,0,0) in its rest frame, we will have

C? =2B,P,B"P" — 2B, P, B P*
=2m*B,B" — 2m*B}

= 2m*B;, B" (2.33)
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Since By = W}, + ZXk =mSy + gQ’yk’yE’Q =mdJ (2.34)
— [J“ JJ] = ieijkjlm so that 02 = 2m4Jka (235)

Note that J is called superspin. The representation of C? is determined from
the eigen-value/state of J2. Let us assign the eigen-state/value of J? as

1 3

J2|j7j3> = ](.7 + 1)|j7j3>7 ] = 07 57 1a 55 27 (236)
Then CZ|m; 4, 73) = 2m*5(j + 1)|m; J, j3) (2.38)
and simultaneously P?|m; 7, j3) = m?|m; j, j3) (2.39)

2.4 N=1 supersymmetry representations

The representation is determined from the anti-commutation relation (2.29),

{Qaa Qﬁ} = Q(O—M)aﬁpﬂa

for the cases of massive and massless particle states.



2.4.1 DMassless representation

In the light-front frame of massless particle of energy E, we have p* = (F,0,0, E).
This results to P? =0 and C? = 0. From (2,29), we will have
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{Qa,Qs} = 2E(0°) 5 + 2E(0°) .5 = 4E< 0 0o ) , (2.40)
S {Qu.Qi) = 4E (2.41)
@1 Qi
Define a = ,cal=—L S5 {a,a} =1 2.42
i ap  leat (2.42)
From (2.34), we will observe that
39 L. 3 1 3_ 13 L
[a,J°] = =(6°)11 = za— aJ” — J°a= -a (2.43)
2 2 2
1
[al, J?] = —§an (2.44)
1
J3(a|E N\ >) = (JPa)|E, )\ >= (A — 5)(a|E,A >) (2.45)
1
a|lE, A >~ |E,\ — 3> (2.46)
1
Similarly a|E, A >~ |E, X + 3> (2.47)

Let us start to construct a set of super-multiplets by first assign a state of
minimum helicity |2 >, where it is known as Clifford vacuum state, so that

Q>=|E,\A>,a|Q>=0, a'|Q>=|E,\+1/2 > (2.48)
Super — multiplets — |E, A >, |E, £(A+1/2) > (2.49)

according PCT conjugate. For examples:
o \ =0 is chiral super-multiplete — {|E,0 >,|E,£1/2 >}
o \ = 1/2is vector/gauge super-multiplets — {|E,+£1/2 >,|E,£1 >}

e \ = 3/2is gravity super-multiplets — {|E,+3/2 >,|E,+2 >}

A=0 A=1/2 A=1/2 A=1

Higgs Higgsion photino photon
selectron | electron gluino gluon

squark quark Wino, Zino W.,Z

A=3/2 A=2
gravitino | graviton




2.4.2 Massive representation

In the rest frame of a particle with mass m, we have p* = (m,0,0,0), then we
have

{Qur Q) = 2m(0°) 5 = Qm( é ) ) S {QusQisl =2m  (250)
ap

Q2+ Qis t
Define a1 2 = —=, a;, = —== — {a12,a =1 2.51
1,2 \/% 1,2 \/% { 1,2 1,2} ( )

Now let us define the Clifford vacuum state |2 >= |m; 4, js >, and a1 2|2 >= 0.
Note that

1.
This means that the SUSY operators when act on state with superspin j = y

will result to states with superspin j = y+1/2. Similar to (2.43, 44), we observe
that

1 1 1
[Q, J3] = 50362 — [al, J3] = Eal, [ag, JS] = —50,2 (253)
(Q,J%] = —%U?’Q — [aJ{,J2] = —%ai, [a;,eﬂ] = %ag (2.54)

This means that aq, ag lower js by 1/2, and ag,a]; raise j3 by 1/2.
Let us start with the Clifford vacuum |2 >= |j, j5 >, where the m is hidden
for convenient. The massive super-multiplet consist of

>=1]j=y.js>  2j+1 (2.55)
allj,js > ablj js > | £1/2,55 >, 20 £1/2)+1  (2.56)
alaflj.js > lj,js >, 2j+1 (2.57)

For examples

e j =0 chiral super-multiplet:
d)? ¢/a d}M

e j = 1/2 vector super-multiplet: 2 fermionic states (Dirac) + 1 scalar + 1
vector

wDa ¢ID7 ¢7 P)/L

Note that in all super-multiplets, number of bosonic and fermionic degree of
freedom are equal, i.e., ng = ng, the proof will placed later.



