
4 Superspace and Superfields

4.1 Superspace

QFT spacetime coordinates is denoted as xµ = (t, ~x), its SUSY extension
can be formulated on superspace, introduced by Salam and Strathdee (1978),
with coordinates

(xµ, θα, θ̄α̇) (4.1)

where θα, θ̄α̇ are Grassmannian coordinates with spinor indices α, α̇. There
basic properties are

θ2 = θαθα = εαβθβθα = 2θ2θ1 = −2θ1θ2 (4.2)

θ̄2 = θ̄α̇θ̄
α̇ = εα̇β̇ θ̄

β̇ θ̄α̇ = −2θ̄2̇θ̄1̇ = 2θ̄1̇θ̄2̇ (4.3)

θαθβ =
1

2
εαβθ

2, θαθβ = −1

2
εαβθ2 (4.4)

θ̄α̇θ̄β̇ = −1

2
εα̇β̇ θ̄

2, θ̄α̇θ̄β̇ =
1

2
εα̇β̇ θ̄2 (4.5)

θαθ̄α̇ =
1

2
(θβσµββ̇ θ̄

β̇)︸ ︷︷ ︸
θσµθ̄

σµαα̇ (4.6)

∂αθ
β ≡ ∂θβ

∂θα
= δβα, ∂αθβ = −δαβ (4.7)

∂̄α̇θ̄
β̇ =

∂θ̄β̇

∂θ̄α̇
= δβ̇α̇, ∂̄

α̇θ̄β̇ = −δα̇
β̇

(4.8)

where (∂α)† = ∂̄α̇.
Superfunction Y (x, θ, θ̄) is defined to be analytic function on superspace.

Its infinitesimal supertranslation on superspace means

θ → θ + ε, θ̄ → θ̄ + ε̄ (4.9)

One can write

Y (x, θ + ε, θ̄ + ε̄)

= e−i(εQ+ε̄Q̄)Y (x, θ, θ̄)ei(εQ+ε̄Q̄) (4.10)

= e−i(εQ+ε̄Q̄)e−i(xp+θQ+θ̄Q̄)Y (0, 0, 0)ei(xp+θQ+θ̄Q̄)ei(εQ+ε̄Q̄) (4.11)
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Let us determine

ei(εQ+ε̄Q̄)ei(xp+θQ+θ̄Q̄) = ei(xP+(q+ε)Q+(Q̄+ε̄)Q̄)− 1
2

[θ̄Q̄,εQ]− 1
2

[θQ,ε̄Q̄]

= ei(xP+θQ+θ̄Q̄)−(εσµθ̄)Pµ−(θσµε̄)Pµ

= ei(x+i(εσµθ̄)+i(θσµε̄))Pµ+i(θ+ε)Q+i(θ̄+ε̄)Q̄ (4.12)

This means that the supertranslations result to the spacetime transformation
in the form

δθ = ε, δθ̄ = ε̄→ δxµ = i(θσµε̄) + i(εσµθ̄) (4.13)

From (4.11) we will have

δε,ε̄Y (x, θ, θ̄) = (iθσµε̄+ iεσµθ̄)∂µY (x, θ, θ̄)

+iεα∂αY (x, θ, θ̄) + iε̄α̇∂α̇Y (x, θ, θ̄) (4.14)

Similarly from (4.10), we can have

Y (x, θ + ε, θ̄ + ε̄)

= (1− i(εQ+ ε̄Q̄) + ...)Y (x, θ, θ̄)(1 + i(εQ+ ε̄Q̄) + ...)− Y (x, θ, θ̄)

= −iε[Q, Y ]− iε̄[Q̄, Y ] (4.15)

Let us define

[Y,Qα] = QαY, [Y, Q̄α̇] = Q̄α̇Y (4.16)

→ δε,ε̄Y = (iεQ+ ε̄Q̄)Y (4.17)

Under comparison with (4.14), we observe that

Qα = −i∂α − σµαβ̇ θ̄
β̇∂µ (4.18)

Q̄α̇ = +i∂̄α̇ + θβσµβα̇∂µ (4.19)

→ {Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0, {Qα, Q̄β̇} = 2σµ
αβ̇
Pµ (4.20)

4.2 Chiral superfields

Let us define the chiral operators

Dα = ∂α + iσµ
αβ̇
θ̄β̇∂µ (4.21)

D̄α̇ = ∂̄α̇ + iθβσµβα̇∂µ (4.22)

→ {Dα, D̄β̇} = 2iσµ
αβ̇
∂µ = 2σµ

αβ̇
Pµ (4.23)
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The chiral superfield Φ(x, θ, θ̄) is defined to satisfy a condition

D̄α̇Φ(x, θ, θ̄) = 0 (4.24)

The anti-chiral superfield Ψ(x, θ, θ̄) is defined to satisfy a condition

DαΨ(x, θ, θ̄) = 0 (4.25)

Let us define the chiral and anti-chiral coordinates, respectively, as

yµ = xµ + iθσµθ̄ → D̄α̇y
µ = 0 (4.26)

ȳµ = xµ − iθσµθ̄ → Dαȳ
µ = 0 (4.27)

So that the general form of chiral superfield can be written as

Φ(y, θ) = φ(y) +
√

2θψ(y)− 1

2
θ2F (y) (4.28)

From (4.26), with Taylor’s expansion for θ → 0, we have

Φ(x, θ, θ̄) = φ(x) + iθσµθ̄∂µφ(x)− 1

4
θθθ̄θ̄∂2φ(x)

+
√

2θψ(x)− i√
2
∂µψ(x)σµθ̄ − θθF (x) (4.29)

And the corresponding anti-chiral superfield is Φ̄ = (Φ)†. Let us determine

δε,ε̄Φ(y, θ) = (iεQ+ iε̄Q̄)Φ(y, θ) (4.30)

Qα = −i∂α, Q̄α̇ = −i∂̄α̇ + 2θασµαα̇∂yµ (4.31)

→ δε,ε̄Φ(y, θ) = (εα∂α + 2iθασµ
αβ̇
ε̄β̇∂yµΦ(y, θ)

=
√

2εψ(y)− 2εθF (y) + 2iθσµε̄
(
∂yµφ(y) +

√
2θ∂yµψ(y)

)
=
√

2εψ(y) +
√

2θ
(
−
√

2εF (y) +
√

2iσµε̄∂yµφ(y)
)

−θθ
(
−i
√

2ε̄σ̄µ∂yµψ(y)
)

(4.32)

For SUSY invariant superfield δε,ε̄Φ(y, θ) =, then we have SUSY transforma-
tions on component fields in the form

δφ =
√

2εψ (4.33)

δψα =
√

2iσµ
αβ̇
ε̄β̇∂µφ−

√
2εαF (4.34)

δF = i
√

2∂µψσ
µε̄ (4.35)
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The SUSY in variant Lagrangian of the chiral superfield components will be

L = ∂µφ
∗∂φ+ ψ̄α̇iσ̄

µα̇β∂µψβ + F ∗F (4.36)

It is known as Wess-Zumino model. It can be proved to SUSY invariant, up
to the total derivative term, by using (4.33-35).

4.3 Superpotential

Note that (4.36) is the simplest SUSY model of a free massless fields, where F
is auxillary field without kinetic term. The interaction term can be inserted
in form of Kahler superpotential

K(Φ†Φ)

K is said to be canonical if it is a polynomial of chiral superfield.

4.4 Vector superfield
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