4 Superspace and Superfields

4.1 Superspace

QFT spacetime coordinates is denoted as x* = (t,Z), its SUSY extension
can be formulated on superspace, introduced by Salam and Strathdee (1978),
with coordinates
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where 60,, 0, are Grassmannian coordinates with spinor indices «, &. There
basic properties are
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where (9,)" = 0. )
Superfunction Y'(z, 8, 0) is defined to be analytic function on superspace.
Its infinitesimal supertranslation on superspace means

0—=0+e 0—0+¢ (4.9)
One can write
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Let us determine
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This means that the supertranslations result to the spacetime transformation
in the form

60 =€, 00 = € — da" = i(0o"€) + i(eatD) (4.13)
From (4.11) we will have
b6ccY (2,0,0) = (i0o"e + iea”0)0,Y (x,0,0)
+i€*0,Y (2,0, 0) 4+ i€*04Y (z, 0, 0) (4.14)
Similarly from (4.10), we can have
Y (2,0 +¢0+¢)
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Let us define

[Ya Qa] = Qa}/a [K Qéz] = Qdy (416>
— Y = (ieQ + Q)Y (4.17)
Under comparison with (4.14), we observe that
Q, = —i0, — agﬂ.éﬁ'aﬂ (4.18)
Qs = +i0s + 0°0%,0, (4.19)
= {Qa, @p} = {Qa Q} = 0,{Qa, Q} = 207, P, (4.20)
4.2 Chiral superfields
Let us define the chiral operators
Dy = 0 + ic" 6%, (4.21)
Dd = 5@ + 2'950’50.18“ (422)
— {Da, Dy} = 2ic" 0, = 20", P, (4.23)
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The chiral superfield ®(z, 0, 6) is defined to satisfy a condition

Ds®(x,0,0) =0 (4.24)

The anti-chiral superfield ¥(x, 0, ) is defined to satisfy a condition
D,V (z,0,0) =0 (4.25)

Let us define the chiral and anti-chiral coordinates, respectively, as
y" = 2t +i0o"0 — Doyt = (4.26)
g = at —ifo"0 — Dyt = (4.27)

So that the general form of chiral superfield can be written as

By, 0) = 6(y) + VIU(y) ~ LB F(y) (1.28)

From (4.26), with Taylor’s expansion for § — 0, we have
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And the corresponding anti-chiral superfield is ® = (®)f. Let us determine

0 e®(y, 0) = (ieQ + 7€Q)D(y, ) (4.30)
Qo = =100, Q4 = —i04 + 20%0" 0, (4.31)
= 8ee®(y, ) = ("0n + 2i6°0" &0, D(y, 0)

= V2e)(y) — 2e0F (y) + 2if0"e (8yu¢(y) + ﬂeayw(y))
= V2eu(y) + V20 (—V2eF(y) + V2 D0 (y))
—00 (—z'\/ia?“ayuwy)) (4.32)

V2601 (x) (z)o"0 — BOF () (4.29)

For SUSY invariant superfield 6. :®(y, #) =, then we have SUSY transforma-
tions on component fields in the form

56 = V2e) (4.33)
o = V2i0" ;80,0 — V2 F (4.34)
OF = iv/20,3p0"e (4.35)
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The SUSY in variant Lagrangian of the chiral superfield components will be
L =0,0"0¢ + 14i5"0,1bs + F*F (4.36)

It is known as Wess-Zumino model. It can be proved to SUSY invariant, up
to the total derivative term, by using (4.33-35).

4.3 Superpotential

Note that (4.36) is the simplest SUSY model of a free massless fields, where F
is auxillary field without kinetic term. The interaction term can be inserted
in form of Kahler superpotential

K(o'0)

K is said to be canonical if it is a polynomial of chiral superfield.

4.4 Vector superfield



