4 Superspace and Superfields

4.1 Superspace

QFT spacetime coordinates is denoted as x* = (t,Z), its SUSY extension
can be formulated on superspace, introduced by Salam and Strathdee (1978),
with coordinates

(2", 04, 04) (4.1)

where 60,, 0, are Grassmannian coordinates with spinor indices «, &. There
basic properties are

92 = Qozga = eaﬁeﬁea = 29291 = —20102 (42)
02 = 0,0 = e, ,0°0° = —20,0; = 20,0, (4.3)
005 = 1%592, 070" = —%EQW (4.4)
0.0 = _5%92 099" = ;GG‘B§2 (4.5)
_ 1 _
0,05 = 5 (9ﬁ0u5595) ol (4.6)
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07 = 205 =0, 0 (95 = —(55- (4.8)

where (9,)" = 0. )
Superfunction Y'(z, 8, 0) is defined to be analytic function on superspace.
Its infinitesimal supertranslation on superspace means

0—=0+e 0—0+¢ (4.9)
One can write

Y (2,0 +¢,0+¢)
— ¢ HQEQY (1,0, §)ei Q) (4.10)
_ efi(eQJrEQ)efi(xp+9Q+9_Q)Y(O 0 0) i(zp+0Q+0Q) 1(6Q+EQ) (4'11>



Let us determine
QIEQ) pi(zpHIQ Q) _ Li(zP+(a+)QHQ+6)Q)—510Q,eQ]—3[0Q.€Q)]

_ ei(xP+9Q+éQ) —(ea”0) P, —(00"€) P,

€i(

— pilati(eat0)+i(004€)) Puti(0+e)Q+i(0+6)Q (4.12)

This means that the supertranslations result to the spacetime transformation
in the form

60 =€, 00 = € — da" = i(0o"€) + i(eatD) (4.13)
From (4.11) we will have
b6ccY (2,0,0) = (i0o"e + iea”0)0,Y (x,0,0)
+i€*0,Y (2,0, 0) 4+ i€*04Y (z, 0, 0) (4.14)
Similarly from (4.10), we can have
Y (2,0 +¢0+¢)
=(1—i(eQ+ Q)+ ..)Y(2,0,0)(1 +i(eQ + Q) + ...) — Y (x,0,0)
— i@, Y]~ i€Q, Y] (4.15)

Let us define

[Ya Qa] = Qa}/a [K Qéz] = Qdy (416>
— Y = (ieQ + Q)Y (4.17)
Under comparison with (4.14), we observe that
Q, = —i0, — agﬂ.éﬁ'aﬂ (4.18)
Qs = +i0s + 0°0%,0, (4.19)
= {Qa, @p} = {Qa Q} = 0,{Qa, Q} = 207, P, (4.20)
4.2 Chiral superfields
Let us define the chiral operators
Dy = 0 + ic" 6%, (4.21)
Dd = 5@ + 2'950’50.18“ (422)
— {Da, Dy} = 2ic" 0, = 20", P, (4.23)
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The chiral superfield ®(z, 0, 6) is defined to satisfy a condition

Ds®(x,0,0) =0 (4.24)
The anti-chiral superfield ®(z,6,0) is defined to satisfy a condition

D, ®(x,0,0) =0 (4.25)
Let us define the chiral and anti-chiral coordinates, respectively, as

y" = 2" +ifo"0 — Day" =0 (4.26)
g =" — 0ot — Dyt = (4.27)

So that the general form of chiral superfield can be written as

B(y,0) = 6(y) + VIU(y) ~ 20°F(y) (4.28)

From (4.26), with Taylor’s expansion for § — 0, we have

(. 0,0) = p(z) + i00"00,6(x) — ieeeea%(x)
1

V200 (x) 7

000,1(z)o"0 — 00 F (x) (4.29)

Let us determine

0P (y,0) = (1eQ + i€Q) ®(y, ) (4.30)

Qo = =104, Q4 = —i04 + 20%0" 0, (4.31)

= 8ec®(y,0) = ("0n + 2i6°0" &0, (y, 0))

— V3eh(y) — 20F (y) + 2i00"¢ (9,0(y) + V200,0(y)
= V2eu(y) + V20 (~V2eF(y) + V2 Do (y))

00 (~iv2eot0p0(y)  (432)

For SUSY invariant superfield J.®(y,6), then we have SUSY transforma-
tions on component fields in the form

e = V2e) (4.33)
Setbe = V2i0" 0,6 — V2 F (4.34)
6. F = iv20,1p0te (4.35)
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A similar expression for anti-chiral superfield ®(z, 6, §) will be
D,® =0, y"=a"—ifc"0 (4.36)
®(y) = ¢"(5) + V200 () — 00F* (y) (4.37)
After Taylor’s expansion, we have
_ _ _ 1 -
O(z,0,0) = ¢*(x) — i0o"00,0" () — 1«90082&‘(37)

+V200(z) + Eééeauaw(x) — 06F*(z) (4.38)

And the supersymmetric variation 565@ will be

5:0" = V/2e) (4.39)
5cth = —iN/2e0”0,¢" — V/2eF* (4.40)
0 F* = —i/2e0" 0,1 (4.41)

4.3 Chiral superfield Lagrangian

The kinetic term of chiral multiplet can be constructed from chiral superfield
in the form

Liin = [ EOPIB(.0.0)0(2.6,6) = DDl (4.42)
Let us determine
B(z,0,0)0(x,0,0) = [¢"(x
1
—09900° " () +

+ V2604 (x) — 00F*(x) — i00"00,¢" (x)
000510,0][¢(x) + V200 (x) — 0OF (x)

5=
[\]

— ﬁ%@#w(:c)a“é] (4.43)

— DD ygs5 = 0000 <—%¢*82¢ + %(@5—“8@ — Qubati) + FF> (4.44)

0030, 0(x) — }leee‘e‘a%(x)

So that
Liin = 0,0° (2)06(2) + £ (D(2)0" By (x) — Dyl ()5 ()
+F*(z)F(x) + total derivative (4.45)
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This is known as Wess-Zumino model. A more _general kinetic term can
be constructed from the Kahler superpotential K(®,®), a polynomial of its
argument, in the form

N,M

K@ ®)= Y cpn®"®™ (4.46)
n,m=1
Lo = / POPIK (D, D) = K (B, ®)|g00 (4.47)

Its simplest form K(®,®) = ®(x,0,0)®(x,0,0) is called canonical Kahler
superpotential. and results to Wess-Zumino model above.

The interaction term can be derived from the superpotentials W (®), W (®),
in the form

Loy = / 2OV (D) + / POV (B) = W(D)go + W( D)y (448)

Let us determine the Taylor’s expansion of W(®) about the scalar field com-
ponent as

W(®) =W (p+ V200 — 00F)

8W 1 0*W
e 4.4
Wio) + Va0~ 00 (58 + 0o ) (4.49)
ow 1 0*W
— W(®)op = _8_¢F - §8¢8¢¢w (4.50)
Note that we have use the fact that §%1,0%s = —%90‘9@@&5@/)/3. Therefore
ow 1 0*W 1
Lint = —8—¢F — §a¢a¢¢¢ theo==Wol = cWestp + hee. (4.51)

The total Lagrangian, with the canonical Kahler superpotential, becomes
L= 0Pga99 + W(®)og + W(P)lgg
= 0,6" 0" + 5 (Do — V"0, ) + F'F
1 SR T
—WyF — §W¢¢@/}¢ - WaF" — §Wq;q;@/)¢ (4.52)
The EOM of the scalar field F, F'*, from Euler-Lagrange equation, becomes

F*=W,, F=W; (4.53)
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Bach insertion into (4.48), we get

L=0,0"0"¢ + %@w% — " d,0)
—[Wyl* — %Wwww - %W%Wiﬁ (4.54)
There appears a non-trivial scalar potential in the form
V(9,6 = [Wy/* (4.55)
For example of interacting Wess-Zumino model, with the superpotential

W(B) = Lm®® > Loe = 6" — i) — S (4.56)

It is the mass term.

4.4 Vector superfield

The real vector superfield V(z,6,6), with a condition V! = V| its possible
component fields are

V(x,0,0) = C(z) + i0x(x) — i0x(z) + Oc"0v, ()
i i

+§993(a:) - 5003 ()

+i000 (/\(x) + %0“8,0((3:))

066 ()\(:U) + %aum(x))

1 - 1,

+§9999 D(x) — 58 C(x) (4.57)
Note that real bosonic fields (C, M, N, v,, D) gives 8 bosonic degrees fo free-

dom, while the fermionic fields (y, \) give 8 fermionic degrees of freedom.
Let us apply with the supergauge transformation of the form

Vo V4 i(d + ®), (4.58)



where ® = (¢,1), F) is chiral superfield, we will observe the transformations

C—C+i(¢"+9) (4.59)

X = X — V2 (4.60)

B B—iF (4.61)

v, = v, + 0u(o+ ¢F) (4.62)
A— A (4.63)

DD (4.64)

In order to get gauge invariant vector field model, we have to choose (C' =
0,x = 0,B = 0) components, this is called Wess-Zumino gauge condition.
From (4.57) we will have

V(x,0,0) = 00" v, () + i000X(x) — i000X () + %eeeep(m) (4.65)

or simply as V = (v,, A\, A\, D). SUSY variations of these component fields
are

V200t = et X — ety (4.66)
V20.\ = €D + %0“5”(@% — 0,vy,) (4.67)
V26.D = eo" I\ + "0, (4.68)

4.5 Supersymmetric vector (gauge) field Lagrangian

In order to construct SUSY invariant vector field Lagrangian, we have to
construct the super-field strength tensor of the form

W, — _ipppav, W, = _}lDDde (4.69)

We can observe that they are invariant under super-gauge transformation
W, — W, — EDDDG(@ 4B =0 (4.70)
W@%WQ—EDDDJ@+¢%:O (4.71)

From (4.65) and (4.69) we will have
Wo = —idg + 0aD + i(0"0) o F, + 00(6"0,N\) (4.72)
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with F),, = d,v, — 0,v,. Now determine
1 _
/ POWW, = WoW,|go = —5 Fuw " = 2iAa" 9\ + D?

+ie“”p”FWF,w (4.73)

One thus finally have

1 |
'Cgauge - Z‘:W&WOJBG + ZWadeé

1 -1
= =L " +iAT O + 5D2 (4.74)

This an abelian supersymmetric gauge field Lagrangian.
For the case of non-abelian supersymmetric gauge field, we will have

V=VT a=11,..dim(G) (4.75)

where {T°} is a set of generators of gauge group G of dimension dim(G).
The super-gauge transformation will be written in the form

eV — e eVe? (4.76)

Within the Wess-Zumino gauge fixing condition the vector superfield, we will
have the fact that

1
eV =14+V+ 5\/2 (4.77)

The super-field strength tensor are now written in the form

Wo= DD (e VDo), Wa= 10D (VDac™)  (478)

Under the super-gauge transformation
1, . - . ,
W, — _ZDD (e”‘q)e_ve_Z<I> D,e'® eve_@)
1 .- - ) . .
= _Ze@DD (67 Dae") e =" Woe™® (4.79)

Similarly

Wd — Gié* Wd(i_iq)* (480)
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Now from (4.77), let us determine

1 1 1
W, = —ZDD [(1—V+§V2) D, (1+v+§v2>}

— _iDDDaV - éDDDaVQ + }lDDVDaV

1- - 1--— 1- - 1_ _
= —ZDDDQV - gDDV(DaV) - gDD(DaV) -V + ZDDVDaV
1-— 1- -
= —ZDDDQV + gDD[V, D,V] (4.81)
| —
additional term
Let us determine the additional term
1-- 1 ; »
SDDIV. DoV = 5(0"6)alv, v] %eeag 5o, M) (4.82)
Then we have
Wy = —idg + 0o D + (0" 0) o F, + 00(a" DN (4.83)
with F,, = 0,v, — 0,v, — %[UH, vy), Dy=0,— %[UH, ] (4.84)

Insertion of gauge coupling constant, let us modify V' — 2gV which results
to
vy = 290, A — 29\, D — 29D

and then
F,, = 0,v, — 0,v, —igv,,v,], D, =0, —1iglv,, |

The non-abelian supersymmetric gauge field (super Yang-Mills) Lagrangian
is then written in the form

1 1 < 1
/Csusy—YM = 4_1 /dQQTT [WaWa] =1Tr _ZF;U/FMV — i)\U”DM)\ + §D2
(4.85)



