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13 Spinor-Helicity Amplitude
13.1 Weyl spinors
From massless Dirac equation
idyY(x) =0 (13.1)

where ¢ = y*0,, and y* is Dirac gamma matrix satisfy Clifford algebra {v#,~+"} =
2n*¥. In Dirac representation of the gamma matrix, i.e.

70 = 8,4 =pa’, i=1,2,3
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when 15 is 2x2 identity and {o'} is a set of Pauli matrices, we cannot find
a different solutions of Dirac positive energy U(p) and negative energy V(p)
spinors, since they satisfy the same equation. On contrary we can have in Weyl
representation of the Gamma matrix
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Y=l o )0 = (13,7) and " = (13, —7) (13.2)

Let us start with positive energy solution, with trial function

i (13.1)
Y(z) < U(p)e™ " ——= py*U(p) =0 (13.3)
o w (13.2) 0 Duot up \
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— pudtur = (E+6-plug =0 (13.5)
ppotus = (E -0 - plus =0 (13.6)

Since p# is a null momentum, i.e. p*> = E?—p% = 0 — E = |p], and by definition
of helicity operator

A 5-’15‘
h=2P 13.7

Then we have from (13.5,6)

(14 h)uy =0 huy = —uy (13.8)
(1= h)ug = 0 — huy = +uy (13.9)



From this u; is said to be left-handedness spinor, and us is said to be right-
handedness spinor. The spinor symbols and indices are assigned in the form

Uy =1, a=12and up=7% a=1,2 (13.10)
Note that
(Vo) =1a, ()T =n° (13.11)

On the other hand we can lift or lower spinor index by using total anti-symmetric
tensor as

U = g, Yo = eapt’ (13.12)
e = ea 1 = e (13.13)
where
€2 =1=—' = —¢19 =€ and 2 =1=_—¢%= —€§y = €35

We also assign spinor indices to the gamma matrix in the form

u (13.6) .

ot oy = Pudhe” =0 (13.14)
gy grio U39, Guaay, — (13.15)

From (13.4) one can write Dirac U spinor in the form

U— < :é’g > (13.16)

Its Dirac conjugation is

0 1 = o T
70:(1 0>|—>U:UT0:(77 Vs ) (13.17)
Then we can observe the orthonomality and completeness relations as
UU = n%q +1pai® =1 (13.18)
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— puUZd = Pad = YaVs (13'20)
Pt = pte = oy (13.21)

and the other two products are zero. We can define the helicity projection
operator in the form

[

. ~1p 0 1 0 0
s = Oyl 2? — ( 2y ) — Pr = 5(la+75) = ( 01 ) (13.22)
1

Pr = %(14 —s) = ( 02 8 ) (13.23)



From (13.16) we will have

UR—PRU—<770@ > UL—PLU—<%“>
= Up=(n" 0),U,=(0 vs)

The negative energy V spinor is defined in the form

VZ(Z;)’U1:U27 UQZUQ’—)V:(ZZ)
V=i ) ve= () o= ()

13.2 Spinor brackets

To be more practical we may define spinor bravkets in the form

(rg) = Ur()Ur(q) =n*(p)alq) = Vi(p)Vr(q
[pal = UL(p)Ur(q) = %a(p)i®(q) = Vr(p)Vi(q
(pgl = Ur(p)Ur(p) =0=Vi(p)VL(q)
[pg) = UL(p)UL(q) =0=Vr(p)Vr(q)

Note the anti-symmetric property

(pa) = n*(0)Yalq) = € ns(p)Yalq) = —* Yalg)ns(p)
= =4’ (q)ns(p) = —(qp)

= (pp) =0

Also [pq] = —[gp] = [pp] =0

Their outer products

pa = UL(p)Ur(q) = ¥a(p)n®(q) = 0= Vr(p)VL(q)
plle = Ur(p)UL(q) = 7%(p)alq) = 0=V L(p)VL(q)
Pla = UL®)UL(q) = ¢a(p)alq) = Valp)Vr(q)

Pl = Ur(p)Ur(q) = 71*()n*(q) = VL(p)VL(q)



The inner products with gamma matrix

*q = Ur(p)¥"Ur(q) = n*(p)ots7%(q)
pva) = Ur®)"UL(q) = ¥a(p)a"**valq)
(m*"q) = Ur(p)¥"UL(q) =0
el = ULlp)y"Ur(q) =0

Let us determine

(" a)(rys] = n™ () oha 0 ()N (1), 55X (5)
= ()P (N (1) X" (5)2€apes5 = —20" (D) Aa (1)1 4(0)X" (3)
= —2(pr)[gs] = 2(pr)[sq]

(" al{av.p] = 2(pa)[pq] —= 2|(pg)|?

After we have used the fact that o},,0,,55 = 2€ape, 5 and [pq] = (pg)*.

13.3 Spinor representation of vectors
13.3.1 Spinor representation of 4-momentum p*

From (13.19-21), one can write in more details as

0 3 1, 2
p =D —p- +p
PuThs = Pac = < pl—ip? 0 4P )

p
— detpad — (p0)2 _ (p1)2 _ (p2)2 _ (p3)2 — p2 =0

- ( j’p_j B ) = Aa(p)Aa(p)

(13.47)
(13.48)

(13.49)

(13.50)

(13.51)

where p~ = p° —p3, pT =p°+p3, pT =p' —ip?, pT = p* +ip*. One can make

a quest of A, (p) to satisfy (13.45) in the form

S

(13.52)
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(13.55)



Let us determine

(pa) lap] = A (D)pa(Q) i3 ()i (p)
1
T optet

A S Al
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+
q
=—"[(¢") + (®* +2p'¢" +2p°¢* - pj[(pl)2 + (p*)?]
=2¢'p" +2¢°p" — ¢t (0° —p*) —pT(¢" = ¢*)
= —2¢°p° + 2¢'p" + 2¢%p* + 2¢°p° = —2p - ¢ (13.56)
13.3.2 Spinor representation of 4-polarization e*

Photon polarization vectors are ei /- (k), their spinor representations are defined
in the form

Iy Foytt
e (k,r) = — (ry" 4] and € (k,r) = _ Sytr]

V2(kr) V2[rk]
where r# is an arbitrary reference momentum in which r-k # 0. We can observe
their transversality with k* as

(13.57)

el (1) = — %:% _ <”“]<’€§§kf;’“> L (13.58)
et (k1) = — f;m] __ <kk>[’f’"]ﬂ+[rg}“"’]<’"] ~0 (13.59)

After we have used the completeness relation of Dirac U spinor
> Un(p)Un(p) = p)lp+pl(p = p
h=R/L

With the basic property € (k,r) = e (k,7), we can observe the completeness
relation as

Z e (k,r)ep (k,r) = e (k,r)el (k,r) + € (k,r)e’" (k)

h=+

(ry" K] (kyr] (Rt r](ry k]
2(kry[rk] 2[rk]{kr)

A(r)at 0% ()N (k) oy .2 (1)

= e (k,r)e” (k,r) + € (k,r)e(k,r) =

1
- 2(kry|rk] {
FU (R)ah A (1A ()t 0 () |

= m {_nMUAa(r)¢a(k)d)B(k)5\B (r)

0 () Aa(r) N5 (M) () b = = (13.60)



13.4 Spinor-helicity amplitudes of QED
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Figure 13.1: t-channel Bhabha scattering.

The t-channel Bhabha scattering appear in figure (13.1), an expression of its
amplitude is

UBYUMV(2V(4)  (13.61)

where we have denoted U/V (i) = U/V(ps, h;). The non-zero terms are list
below

M+ =) = 1S ()t X ) (p2)0, 53 (1)

= i?(psﬁ“pﬂ(pzwm} = —2i§(p2p3>[p1p4} (13.62)
iMy(— = ++) = ‘i—g&(m)ﬁ”dawa(m)Xﬁ(pz)ﬁff%/a(p4)

= zé[pw”pl)[pawm) = —2i672(p2p3>[p1p4] (13.63)
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= i%(?ﬂﬂpl][pﬂw@ = =21~ (pspa)[p2p1] (13.64)
2 ) .
IMi(= + —+) = i X (p2)5" Y (01)0° (p2), 55X (1)
2 2
= i%[pw“pﬁ(pﬂum} = —Qi%[pzapd (p2p1) (13.65)



The mean amplitudes squared are

IMi(++——)]2 = %<p2p3>[p3p2][p1p4]<p4p1>

4

=455 (P pa)(p2 - pa) = € = [M(= = ++)P

A

IMi(+—4+-)2 = %<p3p4>[p4p3][p2p1]<p1p2>

et O
= 4§(p3 'p4)(p1 'p2) =e ) = ‘Mt(* + 7+)‘2

Finally we will have

(13.66)

(13.67)

(13.68)



