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16 Quantization of Gauge Fields

Gauge fields can be quantized within functional integral form, since their
gauge fixing conditions can be easily added into the formulation. The quan-
tization is just writing the reduction of the generating functional in quadratic
form.

16.1 Abelian gauge field

Let A, (z) be an abelian gauge field, with field strength tensor F),, = 9,4, —
0, A, its action functional is

S[AH] = / d'z <—iFWF’“’> (16.1)
= / d*x (—;@Ay(amv — 6”A“)>
_ / i (;Aﬂ(gﬂyag - 8,@,)/1”) (16.2)

where we have applied partial integration on the first term on the right hand
side. This action is invariant under a gauge transformation

AB(z) = AR (z) = AP(z) + ;8“04(95) (16.3)
AP =0 02a = g(9,AM) (16.4)

where a(x) is a real scalar gauge function, and ¢ is the gauge coupling
constant, for the gauge fixing condition d,A4* = 0. This shows that the
gauge condition of A%(z), i.e., F[AL] = 0 is derived as part of solution of
equation of the gauge function (16.4).

The generating functional of gauge field is written in the form

Z[‘]M] _ /D[A,u]eiS[A”]—&-ifd4mJM(x)A/‘(x) (165)

According to the identity of the delta function
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0(f(x)) = é(x —a)

r=a



The we have

S(FAM)) = 5(a — ag) det <5F [A5]>_

5 §(a — ag)ARp[A]  (16.6)

— 1= AFP /D A‘u (167)

when « is solution of equation of the gauge function at the required gauge
fixing condition. Note that App[AL] is known in the name of Faddeev-Popov
determinant, and it is proved to be gauge invariant, i.e.

App AL o] /D a+o|6(FIAL, J]) = A;}D[Ago] (16.8)
Insertion (16.7) into (16.5), after we set ap = 1 we will get

/D A/L (AFP AH /D ) lS[A“]-‘rlfd‘lJ}Ju(l‘)A”( )(169)
= [ Dla] [ DLALIARplALS(FLAL) ST e

EEIN </D[a]) /D[Au]AFP[A“]5(F[A“])eiSA[M]+ifd4:cJu(x)Au(x)
(16.10)

after we have done the gauge transformation o — « + o/, with invariant
measure of the gauge function D[a+a’] = D[a], then we have set a+a’ = 1.
It appears with the stand alone functional integral measure of the gauge
function which will be diverge to infinity. Anyway this divergence will not
effect to our quantum field calculation with this generating functional and
we can ignore it.
Now let us calculate Arp[AH] from the Lorentz gauge condition 9, A*(x) =

0. From (16.4), we will have

FAM] = 9,4 — ;aga(x) . ‘SF[A:())] _ ;5@)(9; _ )@ (16.11)

1
— App[AH] = det ( 6D (x — y)a§> (16.12)
g
And we can turn this into functional form as

AFP[AM] — —i/D[C, E]eé fd4zfd4y6(4>(x—y)6(y)8%c(x) (16.13)

i / Dle, des | 1+e@)0ze(@) (16.14)
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where ¢(z) is known as Faddeev-Popov fermionic ghost field, and ¢(x) is its
conjugation. Then we have from (16.10)

Z[J] / Dle, des | 4'we@0ze()
X /'D[Au]é(F[A#]eiS[A#Prifd4xJ#(x)Au(x) (16.15)

Again the fermionic functional integral appears as the stand alone part and
independent to the gauge field functional integral. So that it can be ignored
without any effect to the gauge field calculation.

Now let us turn the delta functional §(F[A*]) into exponential form. We
just shift the gauge fixing function with some scalar function w(z) as

FAM(z)] — F[A"(2)] - w(z) (16.16)

and then apply the functional integral average overall possible function w(x)
with Gaussian distribution in the form

ZelJu] o / D[AH]iSIA i [ dia (@) Ak ()
[ PRI - w@le 0 g

x / DlA#)SI e e @ [ el @A) (161)

with £ is a constant parameter. Now let us determine the modified gauge
field action

S[AM] — 215/614(0##@))2
=5 [ e (400t - 2,002 - Lo,a0 0,47
_ ;/dzleu(x) |:gw,8§ - <1 - 2) auay} A¥(z) (16.19)

The corresponding Green’s function will be

092 - (1= 1) 0,0.] 62 = 890 —) (16.20)
L [k:Zg,w (1 - 2) kuky} G (k) =1 (16.21)

G (k) = —— w1 — )Rk 16.22
Hg()—mg—(—f)? (16.22)



Note that when setting £ = 1 it is known as Feynman gauge, while £ = 0 it
is known as Landau gauge. From (16.17) we will have

ZelJ,) o /D[Au]eéfd4~”0fd4yA“(y)Gﬁu(zﬁy)A”(I)+ifd4$Ju($)A”($) (16.23)
o o3 /4 [ AYI@GE @) T W) (16.94)
This is the final form of the abelian gauge field generating functional.

16.2 Quantum Electrodynamics or QED
16.2.1 QED Lagrangian

QED action, with Feynman gauge and covariant derivative D, = 0, +ieA,,
appears in the form

S, o, AF] = / d'z {1#(56)(213 —m)y(z) — iFW(Q:)F“”(:p) (16.25)

where e is electric charge (coupling constant).

16.2.2 QED Feynman rules
16.2.3 Functional integral of QED
Propagators

Vertices
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16.3 Non-abelian gauge field

Let A, (x) be a non-baelian gauge field, i.e.,

Ay = At {t"Y € G,a = 1,2,...,dim[G] — [t "] = i f**t°  (16.26)



where G is the gauge group and {f%¢} is a set of structure constants of G.
Let us define the convariant derivative as

Dy =0, —igAy = 0, —igAjt" (16.27)
= [D,m D,] = —ig (aMAV — 0y A, — ig[Am Ay
— _ig (8MA,‘ﬁt“ — 9, A% — igAb AC[E, tc])

— —ig ((‘LAS —0,A% + g fabCAgA;) a (16.28)
= —igF,t* = —igky, (16.29)
s Fly = g[Du, D] (16.30)

The gauge field action is

sia,) = [ dta (_;TT mwpwo

1
— / diz —ingF,;‘”Tr[t“tb]
N——

1 a v
= /d% <—4FWF5 ) (16.31)

This action is invariant under gauge transformation, with the gauge function

B(x) = %(x)t*, in the form

Al(x) > A%(2) =A%)+ ;auﬁa(x) T fobe Al () pe(x) (16.32)
— A%) + ;Duﬁa(m) (16.33)
with 9,A% =0 — 0, D" B = g(9,A%°) (16.34)

Similar to the abelian case,we can write its generating function in the form

Z[J;J _ /'D[Au] /,D[B]AFP[A/L](S(F[A/E]) 6iS[Au]+ifd4zJ“(x)AH(m)
1

= (/D[B]) /D[A#]AFP[A#]d(F[A#])eiS[Au]-H'fd4xJM(ac)AH(x)
(16.35)



when F[A,] = 0 is the gauge fixing condition and the stand alone functional
integral of gauge function ( f D[ﬂ]) will be ignored.

Similar to the abelian case, the Faddeev-Popov determinant can be writ-
ten in fermionic functional integral from as

FlA,] = 9,A" = ;auD“ﬁ

— App[A,] = det (W) - ;det (54)(1’ - y)&uD“) (16.36)

= ; / Dlc, ele’ S 4'we(=0uD")e(@)  (16.37)
And from (16.35), we will have
/D e / AL J(F[A,])efS A+ ] @) (=0uD")e(@) i [ d'alu(w) A% (@)
(16.38)

Note that in this case the fermionic Faddeev-Popov ghost field is coupling to
gauge field through covariant derivative D, = 0, —igA,, inside its quadratic
action kernel.

Next let us rewrite the delta function of the gauge fixing condition in
exponential form by first shift the condition

FlAL)] = FlA, ()]~ w(2) (16.39)

Then apply with Gaussian functional integral average over all possible w(x)
of (16.38) as

. / DA, ¢, / Dlufe %/ P O5(FLAL (2)] - w(a))
ST da(e) (0, Dele) [ At @) (16.40)
N / DIA,. e, 'SVl S AP AL @i dscte) (-0, 040

el f e lu @A (@) (16 471)

Here we have gauge field action, with coupling to the ghost field, in the form

S[A,,c,d = S[A,] — 215 d*z(0,A"(x))
= /d4x (Lym + Lar + Lghost) (16.42)
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where

Lyy = —%FgVFW, Low = —215(6##)2
Lghost = ¢(—0,D")c = &(—02)c + igcd, Alc
— £ (—025°)c€ + g fobect ), A

— Ea(ia‘zé‘(tw)cc o gfabC(auéa)Abucc

(16.43)

(16.44)

(16.45)

Here we do not need the final form of generating functional (16.41), but its

final form of Lagrangian.

16.4 Quantum chromodynamics or QCD

QCD is quantum chromodynamics, it describes the interaction between color
quarks with color gluon gauge fields within the color gauge group SU(3), i.e.,

gauge index a = 1,2,...,8 = dim(SU(3)).

16.4.1 QCD Lagrangian
Its Lagrangian is

— 1 1
Locp =Y (i) —m)yp — ZF,‘fVF“W + Q—SGMAG’“‘(?VA““

+5a(_82)5accc _ gfabC(aME)Abucc
- 1 1
= Y(id — m)y + §A““ [gu,,({):% — <1 — f) ('3,&),,] A
7 aya 9 rabe a a cv
Fge Py AR — S FUOuAY — 0,A7) A A
g2
+Zfab0fadeAZA§AduAeu
+Ea(—8§)c“ — gfabc(8M5‘1)Ab“cC
16.4.2 QCD Feynman rules
16.4.3 Functional integral of QCD
Propagator
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(16.46)

(16.47)



