
1 Introduction

1.1 Natural unit

In this lecture we will work in natural unit of measurement, such that we will
measure c = 1 = h̄, this let us to measure everything in the mass unit as

[mass] = [energy] = [momentum] = [distance]−1 = [time]−1

1.2 Mikowski space M4

To get Lorentz covariant formulation, we will place our formulation on 4-dimensional
Monkowski space M4, with denoted spacetime position vector

x ∈M4 7→ x = xµeµ, x = xµe
µ, eµe

ν = δνµ, µ, ν, ... = 0, 1, 2, 3

eµeν = gµν , e
µeν = gµν , gµαgαν = δµν 7→ gµν = (gµν)−1

gµν := diag.(+,−,−,−), xµ := (x0, ~x) 7→ xµ = gµνx
ν = (x0,−~x)

x2 = gµνx
µxν = x2

0 − ~x · ~x

∂µ = (∂0,∇), ∂µ = (∂0,−∇) 7→ ∂2 = ∂µ∂
µ = ∂2

0 −∇2

1.3 Special relativity and Lorentz transformation

Let us denote xµ = (t, ~x) as a 4-position, its Lorentz transformation is

xµ
LT−−→ x′µ = Λµνx

ν

In case of 01-Lorentz boost, we will have

Λµν =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 , β =
u

c
, γ =

1√
1− β2

7→ t′ = γ(t− βx), x′ = γ(x− βt), y′ = y, z′ = z

∆t′ = γ(∆t− β∆x)
∆x=07→∆t′∆t=∆t0−−−−−−−−−−−−−→ γ∆t0

∆x′ = γ(∆x− β∆t)
δt=0 7→∆x 6=∆x0−−−−−−−−−−→ ∆x′ = ∆x0 = γ∆x

Relativistic kinematic
xµ = (t, ~x) 7→ x2 = τ2

vµ =
dxµ

dτ
= γ

dxµ

dt
= γ(1, ~v) 7→ v2 = 1

pµ = mvµ = (γm, γm~v) = (E, ~p) 7→ p2 = m2

7→ E2 = ~p2 −m2, ~β =
~p

E
, γ =

E

m
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1.4 Lorentz symmetry, group, algebra, and representa-
tions

Let f(x) be a Lorentz scalar function, i.e. invariant under Lorentz transforma-
tion as

x
LT−−→ x′ = Λx, f(x)

LT−−→ f ′(x′) = D(Λ)f(Λx) = f(x)

→ f ′(x) = f(Λ−1x)

For infinitesimal LT we have Λµν ' δµν + ωµν with ωµν = −ωνµ, so that

f ′(x) ' f(x− ωx) = f(x)− ωµνxν∂µf(x) + ...

' f(x)− 1

2
ωµν(xν∂µ − xµ∂ν)f(x) + ...

'
(

1− i

2
ωµνMµν + ...

)
f(x) = e−

i
2ω

µνMµν

→Mµν = i(xµ∂ν − xν∂µ)

where Mµν is known as the generator of Lorentz transformation and it satisfies
the algebra

[Mµν ,Mρσ] = igµρMνσ + igνσMµρ − igµσMνρ − igνρMµσ

We can refine this algebra by introducing the new generators as

M0i = Ki,Mij =
1

2
εijkJk

[Ki,Kj ] = −iεijkJk, [Ki, Jj ] = iεijkKk, [Ji, Jj ] = iεijkJk

We observe two coupled generalized angular momenta, we can decoupling them
by doing the linear combination

J±i =
1

2
(Ji ± iKi) 7→ [J±i , J

±
j ] = iεijkJ

±
k , [J±i , J

∓
j ] = 0

(J+)2|j1,m1〉 = j1(j1 + 1)|j1,m1〉, (J−)2|j2,m2〉 = j2(j2 + 1)|j2,m2〉
with j + 1, j + 2 = 0, 1

2 , 1,
3
2 , 2, ... are generalized angular momentum quantum

number. Note that (j1, j2) will be used for the Lorentz (matrix) representation,
with total genralized angular momentum (spin) j1+j2, j1+j2−1, ..., |j1−j2| ≥ 0.
The following are the first few of its representations:

(j1, j2) Spin Name Notation
(0, 0) 1 Klein-Gordon scalar ϕ
( 1

2 , 0) 1
2 L-Weyl spinor ψα

(0, 1
2 ) 1

2 R-Weyl spinor ψ̄α̇

( 1
2 , 0)⊕ (0, 1

2 ) 1
2 Dirac bi-spinor Ψ

( 1
2 ,

1
2 ) 1,(0) Maxwell vector+gauge fixing Aµ

( 1
2 ,

1
2 )⊗ {( 1

2 , 0)⊕ (0, 1
2 )} 3

2 , (
1
2 ) Rarita-Schwinger+condition Ψµ

(1, 1) 2, (0) Einstein tensor+gauge fixing hµν

Note that another name of Rarita-Schwinger field is gravitinos, it is the super-
partner of graviton, which is another name of Einstein tensor field.

2



1.5 Classical field dynamics

Let us denote F (x) as a generic field function, i.e. a continuous function within
spacetime volume of interest. Its dynamics is determined from the field La-
grangian which is written in term of Lagrangian density as

L =

∫
d3xL(F, ∂µF ) 7→ S[F ] =

∫
dt

∫
d3xL (1.1)

From least action principle we get its equation of motion from Euler-Lagrange
equation as

δS[F ] = 0 =

∫
d4xδL(F, ∂µF ) =

∫
d4x

(
∂L
∂F

δF +
∂L
∂∂µF

δ∂µF

)
=

∫
d4x∂µ

(
∂L
∂∂µF

δF

)
︸ ︷︷ ︸

=0 on Boundary

+

∫
d4x

(
∂L
∂F
− ∂µ

∂L
∂∂µF

)
δF (1.2)

→ ∂L
∂F
− ∂µ

∂L
∂∂µF

= 0 (inside spacetime volume) (1.3)

The conjugate momentum field is derived from the Lagrangian density as

π(x) =
∂L
∂∂0F

(1.4)

The field Hamiltonian density is derived from Legendre transformation of the
Lagrangian density as

H(F,∇F, π) = π∂0F − L 7→ H =

∫
d3xH (1.5)

The following are some of classical fields appear in Lorentz representation:
a) Klein-Gordon scalar field: Let φ(x) be a free real scalar field, i.e.

φ∗ = φ, its satisfy Klein-Gordon equation

(∂2 +m2)φ(x) = 0 (1.6)

This equation is derived from the Lagrangian

LKG =
1

2
∂µφ∂

µφ− 1

2
m2φ2 (1.7)

Its Hamiltonian is

π = ∂0φ 7→ H =
1

2

∫
d3x

(
π2 +∇φ · ∇φ+mφ2

)
(1.8)

From (1.6), its trial free field solution is φ(x) ∼ a(k)e−ik·x, so that

(−k2 +m2)a(k) = 0 7→ 0 = −k2 +m2 = −ω2 + ~k2 +m2, (1.9)

(Dispersion) → ω = ωk =

√
~k2 +m2 (1.10)
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The general free field solution will be

φ(x) =

∫
d3~k

(2π)3

∫
dω

2π

(
a(k)e−ik·x + a∗(k)eik·x

)
(2π)δ(ω2 − ω2

k) (1.11)

Using identity

δ(f(x)) =
∑
i

δ(x− ai)
|f ′(ai)|

, with f(ai) = 0

Then we have

δ(ω2 − ω2
k) =

1

2ωk
(δ(ω − ωk) + δ(ω + ωk))

From (1.1.), we have

φ(x) =

∫
d3k

(2π)32ωk

(
a(k)e−ik·x + a∗(k)eik·x

)
ω=ωk

(1.12)

In case of complex scalar field, i.e. φ∗ 6= φ, its EOM is the same as (1.6) but its
Lagrangian density is

LKG = ∂µφ
∗∂µφ−m2φ∗φ (1.13)

With π = ∂0φ
∗ we have

H =

∫
d3x

(
π∗π +∇φ∗ · ∇φ+m2φ∗φ

)
(1.14)

Its free field solution is

φ(x) =

∫
d3k

(2π)32ωk

(
a(k)e−ik·x + b∗(k)eik·x

)
ω=ωk

(1.15)

b) Dirac spinor field: Let ψ(x) be Dirac spinor satisfies Dirac equation

(iγµ∂µ −m)ψ(x) = 0 (1.16)

where γµ = (γ0, γ1, γ2, γ3) is Dirac gamma matrix defined as

γ0 = β =

(
σ0 0
0 −σ0

)
, γi = βαi =

(
0 σi

−σi 0

)
, i = 1, 2, 3 (1.17)

Clifford algebra→ {γµ, γν} = 2gµν (1.18)

With

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
Dirac Lagrangian is written as

L = ψ̄(iγµ∂µ −m)ψ (1.19)
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where ψ̄ = ψ†γ0 is called Dirac conjugation. The conjugate momentum is

π = iψ̄γ0 = iψ† 7→ H = −iψ̄γi∂iψ +mψ̄ψ (1.20)

From (1.16), its trial free field solution for positive energy E > 0 is ψ(x) ∼
U(k, s)e−ik·x, with spin quantum number s, then we have from (1.16)

0 = (γµkµ −m)U(k, s) = (γ0k0 − γiki −m)U(k, s) (1.21)

U(k, s) =

(
u1(s)
u2(s)

)
7→ 0

(
E −m ~σ · ~k
−~σ · ~k E +m

)(
u1(s)
u2(s)

)
(1.22)

(E −m)u1 + ~σ · ~ku2 = 0, −~σ · ~ku1 + (E +m)u2 = 0

→ u2 =
~σ · ~k
E +m

u1, u1(s) = χs (spinor basis :
∑
s

χ†sχs = 1) (1.23)

U(k, s) = N+

(
χs

~σ·~k
E+mχs

)
(1.24)

where N is the normalization:

∑
s

U†U = |N+|2
(

1 +
(~σ · ~k)2

(E +m)2

)∑
s

χ†sχs = 2E

with the identity (~σ · ~a)(~σ ·~b) = ~a ·~b+ i~a×~b, we get

∑
s

U†U = |N+|2(1 +
~k · ~k

E +m)2
) = |N+|2 2E

E +m
= 2E 7→ N+ =

√
E +m

Exercise 1.1: Show that
∑
s ŪU = 2m.

From (1.24), we can derive the completeness relation of the Dirac U-spinor
in the form

U(k, s) =

( √
E +mχs
~σ·~k√
E+m

χs

)
, Ū(k, s) =

( √
E +mχ†s − ~σ·~k√

E+m
χ†s

)
(1.25)

7→
∑
s

U(k, s)Ū(k, s) =

(
E +m −~σ · ~k
~σ · ~k − (~σ·~k)2

E+m

)∑
s

χsχ
†
s

=

(
E +m −~σ · ~k
~σ · ~k E −m

)
≡ γµkµ +m = /k +m (1.26)

On the other hand the trial free field negative energy E < 0 solution is
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ψ(x) ∼ V (k, s)eik·x, then we have from (1.16)

0 = (−γµkµ −m)V (k, s) = −(γ0k0 − γiki +m)V (k, s) (1.27)

V (k, s) =

(
v1(s)
v2(s)

)
7→ 0 =

(
E +m −~σ · ~k
~σ · ~k −E +m

)(
v1(s)
v2(s)

)
(1.28)

→ (E +m)v1(s) = −~σ · ~kv2(s) = 0, ~σ · ~kv1(s) + (−E +m)v2(s) = 0

v1(s) =
~σ · ~k
E +m

v2(s), v2(s) = χs, (spinor basis :
∑
s

χ†sχs = 1) (1.29)

→ V (k, s) = N−

(
~σ·~k
E+mχs
χs

)
(1.30)

Similarly, we can have∑
s

V †(k, s)V (k, s) = 2E 7→ N− =
√
E +m (1.31)∑

s

V (k, s)V̄ (k, s) = γµkµ −m ≡ /k −m (1.32)

Exercise 1.2: Derive (1.31) and (1.32) explicitly.
The general free field solution of Dirac spinor is written, with Dirac disper-

sion ω = ωk = ±
√
~k2 +m2, in the form

ψ(x) =

∫
d3~k

(2π)3

∫
dω

2π

∑
s

{
a(k, s)U(k, s)e−ik·x + b†(k, s)V (k, s)eik·x

}
×(2π)δ(ω2 − ω2

k) (1.33)

=

∫
d3~k

(2π)32ωk

∑
s

{
a(k, s)U(k, s)e−ik·x + b†(k, s)V (k, s)eik·x

}
ω=ωk

(1.34)

Exercise 1.3: Discuss the existence of Dirac dispersion ωk = ±
√
~k2 +m2.

1.6 Maxwell massless vector field

Let us denote Aµ = (φ, ~A) as the massless Maxwell vector field, it Lagrangian
is written in term of field strength tensor as

Fµν = ∂νAν − ∂νAµ =


0 −E1 −E2 −E3

E1 0 B3 −B2

E1 −B3 0 B1

E3 B2 −B1 0

 , Fµν = −F νµ (1.35)

7→ L = −1

4
FµνF

µν = −1

2
∂µAνF

µν → EoM : ∂µF
µν = ∂2Aν = 0 (1.36)

with the Lorentz gauge condition ∂µA
µ = 0. The conjugate field momentum is

πµ =
∂L

∂∂0Aµ
= −F 0µ 7→ π0 = 0, πi = −π0i = Ei (1.37)
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This means that there is no dynamics of temporal component of the vector field,
so we can set A0 = 0 for convenient.

The field Hamiltonian is

H = −1

2
πiπ

i +
1

2
FijF

ij =
1

2
EiEi +

1

2
εijkεijlBkBl

7→ H =
1

2

∫
d3x( ~E2 + ~B2) (1.38)

From (1.36), the trial free field solution is Aµ(x) ∼ εµ(k, λ)e−ik·x, then we
have

−k2εµ(k, λ) = 0 7→ 0 = k2 = ω2 − ~k2 7→ ω2 − ω2
k = 0 (1.39)

with Maxwell dispersion ωk = |~k|. The general free field solution is written in
the form

Aµ(x) =

∫
d3~k

(2π)3

∫
dω

2π

∑
λ

εµ(k, λ)
(
a(k, λ)e−ik·x + a∗(k, λ)eik·x

)
(2π)δ(ω2 − ω2

k)

=

∫
d3~k

(2π)32ωk

∑
λ

εµ(k, λ)
(
a(k, λ)e−ik·x + a∗(k, λ)eik·x

)
ω=ωk

(1.40)

where εµ(k, λ) is the polarization tensor, i.e.
∑
λ εµ(k, λ)εµ(k′, λ) = δkk′ .

1.7 Canonical quantization

From Hamiltonian dynamics of classical point particle, the dynamical variables
are the degree of freedom {q} and its conjugated momentum {p}. These are
known as canonical variables, where as the particle Hamiltonian is continuous
function of these variables, i.e., H = H(q, p) and its dynamical equation is
known as Hamilton equations.

q̇ =
∂H

∂p
= [q,H], ṗ = −∂H

∂q
= [p,H]

where [A,B] = ∂A
∂q

∂B
∂p −

∂A
∂p

∂B
∂q is called Poisson bracket, and [q, p] = 1 is satisfied

for canonical variables.
Dynamics of particle can be determined from Hamiltonian curve on phase

space, where set of canonical variables is its coordinate. For a closed system,
i.e., constant energy, the Hamiltonian will be a closed curve on phase space.

Canonical quantization, the change from classical to quantum dynamics,
can be done by promoting the canonical variables to be canonical operators and
constrained with some algebra

q → q̂, p→ p̂→ [q̂, p̂] = ih̄

Normally these operators satisfy eigen-value equations

q̂|q〉 = q|q〉, p̂|p〉 = p|p〉
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q̂|p〉 = i∂p|p〉, p̂|q〉 = −i∂q|q〉, 〈q|p〉 =
1√
2πh̄

eipq/h̄

The classical Hamiltonian also becomes Hamiltonian operator and has its own
eigen-value equation

H → Ĥ, Ĥ|ψE〉 = E|ψE〉
This is known in the name of Schrodinger’s equation. Note that the change from
Poisson bracket of canonical variables in classical particle to be commutation
algebra of canonical variables of quantum particle is an importance process
of canonical quantization. Let A(q, p) be some physical property of classical
particle, its quantum dynamics is determined from its operator picture satisfy
Heisenberg’s equation

∂tÂ ==
1

ih̄
[Â, Ĥ]

1.8 Poincare symmetry, group, algebra and representa-
tions

Poincare transformation is known as inhomogeneous Lorentz transformation, i.e.
Lorentz rotation plus translation. Its generator compose of Pµ for translation
and Mµν for Lorentz rotation, which satisfy the algebra

[Pµ, Pν ] = 0 (1.41)

[Pµ,Mρσ] = igµσPρ − igµρPσ (1.42)

[Mµν ,Mρσ] = igµρMσ + igνσMµρ − igµσMνρ − igνρMµσ (1.43)

Two Casimir operators of these algebra are

C1 = P 2, C2 = W 2, Wµ =
1

2
εµρσνMρσPν (1.44)

where Wµ is known as Pauli-Lubanski vector. There are two representations of
Poincare algebra:

a)Massive representation: For massive particle, on its rest frame we will
have Pµ = (M, 0, 0, 0). So that

C1 = M2, Wµ =
1

2
Mεµρσ0Mρσ 7→W i =

1

2
MεijkMjk = MJ i (1.45)

C2 = M2J2 ≡M2j(j + 1), j = 0,
1

2
, 1,

3

2
, 2, ... ≡ s(spin) (1.46)

The eigen basis for massive representation will be identified with particle mass
ans spin, i.e., |M, s〉.

b)Massless representation: For massless particle, on its light front frame
in 3-direction we will have Pµ = (E, 0, 0, E). So that

C1 = 0,Wµ =
1

2
Eεµρσ0Mρσ −

1

2
Eεµρσ3Mρσ (1.47)

→W 0 = −1

2
Eε0ijMij , W

3 =
1

2
Eε3ijMij , i, j = 1, 2 (1.48)
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We observe that W 0 generate left- handedness rotation on 12-plane and W 3

generate right-handedness rotation on 12-plane. They are helicity operators ĥ
for massless particle propagate in 3-direction, with helicity number h = ±1.
So that the eigen-basis for massless representation of Poincare algebra will be
denoted with particle energy E ans its helicity h, i.e. |E, h〉.

Note that the eigen-basis of massive representation is derived from the eigen-
vector of the (spin) angular momentum which are generators of SO(3) group,
while the eigen-basis for massless representation is derived from the eigen-vector
of helicity operator which generate rotation on plane perpendicular to particle
propagation or SO(2) or Euclidean E group. These sugroups of Poincare group
are known as Wigner little groups.
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