2 Scalar Field Quantization
We will study canonical quantization of real scalar field.
2.1 Classical field Lagrangian and Hamiltonian

Klein-Gordon equation of free real scalar field ¢(z) is
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It is derived from the Lagrangian, after applying into Euler-Lagrange equation,

appear in the form
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Its solution is derived as in the following
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with wy = 1/|k|2 + m2. The general solution is
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From (2.5), we have
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The conjugate momentum field 7(z) is derived to be in the form
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The field Hamiltonian is derived from Legendre transformation of the Lagrangian

as
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Note from (2.6) that
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The field amplitude is determined from the inverse Fourier transformation as
a(k) = /d3xeik“r(80 — iwg) () = /dgxeik'rwo(b(x) (2.12)
a*(k) = /dgxefik“(?od)(x) (2.13)
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2.2 Canonical quantization

We promote the field ¢(x) and its conjugate momentum field w(x) to be quantum
operators satisfy the equal time commutation relation

$(x) = d(x), m(x) > 7(z)
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From now on we will understand the field operators from the field without the
hat. Let us study this commutation by insertion with (2.5) and (2.10), for
convenient we will set 2% = y° = 0, we have
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Let us assign the commutation relations
[a(k), a(k")] = 0 = [a (k), a (k)] (2.16)
[a(k),a’ (k)] = (27)%2wk6®) (k — &) (2.17)
We will get from above
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From this result we will get the field Hamiltonian operator, at % = 4% = 0, in
the form
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Apply the spatial integration
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We will get field Hamiltonian operator from above, after doing momentum in-
tegration using delta function, in the form
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The second part on the right hand side of (2.20) gives infinite result. To elimi-
nate this part we define the normal ordering of field operator as

caa’ :=a'a
And define the vacuum state |0) such that

a(k)|0) =0, a' (k) = |k) — 1 — particle state



The physical Hamiltonian operator of quantized field is derived from (2.20) in
the form
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This shows that the quantum of real scalar field compose of a set of an infinite
quantum harmonic oscillators, without vacuum energy. Note that the eliminated
vacuum energy may play an importance role in Casimir effect of the quantum
Universe which appear outside the context of quantum field theory.

2.3 Scalar field propagator

Let us determine the vacuum expectation value of commutator of two field

operators
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After we have used the commutation relation of field operators and doing [ d®k’

integration using delta function.Let us changing the sign of k on the second term,
we will have
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Using identity
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(This is determined from contour integration with Cauchy’s theorem.) This
result to
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On the other hand we can derive this expression from the vacuum expecta-

tion value of the time-ordered field operators as
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After we have used the fact that a(k) 0) = 0, (0|a’(k) = 0, and used the commu-
tation relation of the field operators [a(k),af (k)] = (27)32wpd®) (k — k'). Next

after using the identity above we will get
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This is the same result as above.
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