
3 Scalar Field Interactions

We will determine model Lagrangian, S-matrix, perturbation theory and Dia-
grammatic representations.

3.1 Interaction models

There are three types of scalar field interaction:

� self-interaction, with polynomial potential

V(φ) =
λ

n!
φn(x) 7→ φn −model (1)

when λ is interaction strength or coupling constant and n! is symmetry
factor.

� Yukawa-type interaction, i.e. with potential

VY ukawa(φ,Φ) = λφΦ2 (2)

� Coupling with vector field with some gauge symmetry, this will be deter-
mined later

For our convenient for doing doing some formulation we will use the φ3-self
interaction as our sample model.

3.2 S-matrix theory

In quantum field theory we are interested in doing calculation of the transition
probability of quantum state of two particle from their interaction, i.e. scatter-
ing or collision. Let |p1, p2;α〉 is in the incoming particle state and |q1, q2;β〉 be
the out going state after interaction. The transition probability is determined
from the defined S-matrix which is written in the form

|p1, p2;α〉 = Sαβ |q1, q2;β〉 7→ Sαβ = 〈q1, q2;β|p1, p2;α〉 (3)
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Note that the S-operator is unitary, and its details can be analyzed from the
action of field operators as in the following. Let us write from above

Sαβ = 〈β; q1, q2|p1, p2;α〉 ≡ 〈β; q1, q2|a†(p1)|p2;α〉

= −i
∫
d3x1e

−ip1·x1
←→
∂ x0

1
〈β; q1, q2|φ(x1)|p2;α〉

= i

∫
d3x1

{(
∂x0

1
e−ip1·x1

)
〈β; q1, q2|φ(x1)|p2;α〉

−e−ip1·x1∂x0
1
〈β; q1, q2|φ(x1)|p2;α〉

}
≡ i
∫
d4x1∂x0

1

{(
∂x0

1
e−ip1·x1

)
〈β; q1, q2|φ(x1)|p2;α〉

−e−ip1·x1∂x0
1
〈β; q1, q2|φ(x1)|p2;α〉

}
= i

∫
d4x1

{(
∂2
x0
1
e−ip1·x1

)
〈β; q1, q2|φ(x1)|p2;α〉

−e−ip1·x1∂2
x0
1
〈β; q1, q2|φ(x1)|p2;α〉

}
(4)

Using the fact that

0 = (∂2
x1

+m2
1)e−ip1·x1 = (∂2

x0
1
−∇2

x1
+m2

1)e−ip1·x1

7→ ∂2
x0
1
e−ip1·x1 = (∇2

x1
−m2

1)e−ip1·x1

The doing integration by part two times of the term containing ∇2
x1

and ignore
all boundaries, we will get from above

Sαβ = −i
∫
d4x1e

−ip1·x1(∂2
x0
1
−∇2

x1
+m2

1)〈β; q1, q2|φ(x1)|p2;α〉

≡ −i
∫
d4xe−ip1·x1(∂2

x1
+m2

1)〈β; q1, q2|φ(x1)|p2;α〉 (5)

A similar analysis for p2 state, we will get

Sαβ = (−i)2

∫
d4x1

∫
d2x2e

−ip1·x1−op2·x2

×(∂2
x1

+m2
1)(∂2

x2
+m2

2)〈β; q1, q2|T [φ(x1)φ(x2)]|Ω;α〉 (6)

when the extra time ordering operator T is inserted to take care all possible
time ordering inside the two field operators., and we have defined the interacting
ground state |Ω〉.

A similar process of analysis can be done with state |q1, q2;β〉 and results in
term of the conjugation as

Sαβ = (−i)4

∫
d4x1

∫
d4x2

∫
d4y1

∫
d4y2e

−ip1·x1−ip2·x2+iq1·y1+iq2·y2

×(∂2
x1

+m2
1)(∂2

x2
+m2

2)(∂2
y1 +m2

3)(∂2
y2 +m2

4)

×〈β; Ω|T [φ(x1)φ(x2)φ(y1)φ(y2)]|Ω;α〉 (7)
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This is known in the name of LSZ reduction formula, according to Lehmann,
Symanzik and Zimmermann. Its general form appear as

〈q1, q2, ..., qn|p1, p2, ..., pm〉 = (−i)n+m

∫
d4x1...

∫
d4xm

∫
d4y1...

∫
d4yn

× exp

−i
n∑
j=1

pj · xj + i

n∑
l=1

ql · yl

 (∂2
x1

+M2
1 )...(∂2

xm
+M2

m)

×(∂2
y1 +M ′21 )...(∂2

yn +M ′2n )〈Ω|T [φ(x1)...φ(xm)φ(y1)...φ(yn)]|Ω〉 (8)

3.3 Perturbation theory

3.3.1 Interaction picture

Note that the field operator φ(x) is born to be Heisenberg operator, satisfy
Heisenberg’s equation

i∂0φ(x) = [φ(x), H] (9)

where H is the field Hamiltonian operator. With interaction, we can write

H = H0 + V, where V =

∫
d3xV(φ) (10)

The Heisenberg field operator can be similarity transformed from Schrodinger
field operator as

φ(x) = U†(t, 0)φS(0, ~x)U(t, 0), where U(t, 0) = Te−i
∫ t
0
Hdt′ (11)

On the other hand we also have the field operator in interacting picture φI(x)
which has similarity transformed from the Schrodinger field operator in the form

φI(x) = U†0 (t, 0)φS(0, ~x)U0(t, 0), where U0(t, 0) = Te−i
∫ t
0
H0dt

′
(12)

Then we can write

φ(x) = U†(t, 0)U0(t, 0)φI(x)U†0 (t, 0)U(t, 0) (13)

By the invention

UI(t, 0) = U†0 (t, 0)U(t, 0)

≡ Te−i
∫ t
0
VIdt

′
= Te−i

∫ t
0
dt′

∫
d3x′V(φI(x′)) (14)

φ(x) = U†I (t, 0)φI(x)UI(t, 0) (15)

Now let us determine the product of time-ordered Heisenberg field operators

T [φ(x1)φ(x2)...φ(xn)]
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Assume t1 > t2 > ... > tn, for simplicity, one can write it in term of product of
interaction field operators as

U†(t1)φi(x1)UI(t1)U†I (t2)φI(x2)UI(t2)...U†I (tn)φI(xn)UI(tn) (16)

With the fact that U(t) = Te−i
∫ t dt′

∫
d3x′V(φI(x′)) we will have

7→ U†I (t1)UI(t2) = Te−i
∫ 1
2
dt′

∫
d3x′V(φI(x′)) ≡ UI(1, 2) (17)

From above, in generic time-ordering, we can write

T [φ(x1)φ(x2)...φ(xn)] = T [U(t1, tn)φI(x1)φI(x2)...φI(xn)] (18)

3.3.2 Gell-Mann and Low theorem

The theorem state that
”the interaction can be assumed to be adiabatic developed from no-interaction

in the far past and adiabatic die out into no-interaction in the far future”
With this assumption the interaction ground state |Ω〉 will become the non-
interacting ground state |0〉 in the far past or far future. Then the non-
interaction ground will develop in time by interaction as

e−iHT |0〉 = e−iE0T |Ω〉〈Ω|0〉+
∑
n 6=0

e−iEnT |n〉〈n|0〉︸ ︷︷ ︸
→Ignored as T→∞

(19)

Then we have

|Ω(t0)〉 = lim
T→∞

(
e−iE0(t0+T )〈Ω|0〉

)−1

e−iH(t0+T )|0〉

= lim
T→∞

(
e−iE0(t0−(−T ))〈Ω|0〉

)−1

e−iH(t0−(−T ))|0〉

= lim
T→∞

(
e−iE0(t0−(−T ))〈Ω|0〉

)−1

U(t0,−T )|0〉 (20)

Similarly we will have

〈Ω(t0)| = lim
T→∞

〈0|U(T, t0)
(
e−iE0(T−t0)〈0|Ω〉

)−1

(21)

The factor 〈Ω|0〉 is determined from the normalization condition

1 = 〈Ω|Ω〉 lim
T→∞

(
|〈0|Ω〉|2e−2iE0T

)−1 〈0|U(T, t0)U(t0,−T )|0〉

7→ |〈0|Ω〉|2 =
e−2iE0T

〈0|U(T,−T )|o〉
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3.3.3 Perturbation expansion

From the expression of the S-matrix, on can write

Sαβ = lim
T→∞

(−i)4

∫
d4x1

∫
d4x2

∫
d4y1

∫
d4y2...

×e−ip1·x1−ip2·x2+iq1·y1+iq2·y2 ...

×(∂2
x1

+m2
1)(∂2

x2
+m2

2)(∂2
y1 +m2

3)(∂2
y2 +m2

4)...

×〈0|T [UI(T,−T )φI(x1)φI(x2)φI(y1)φI(y2)]|0〉
〈0|UI(T,−T )|0〉

= (−i)4

∫
d4x1

∫
d4x2

∫
d4y1

∫
d4y2e

−ip1·x1−ip2·x2+iq1·y1+iq2·y2

×(∂2
x1

+m2
1)(∂2

x2
+m2

2)(∂2
y1 +m2

3)(∂2
y2 +m2

4)
N
D

(22)

When

D = 〈0|UI(∞,−∞)|0〉 = 〈0|Te−i
∫
d4x′V(φI(x′))|0〉 = 1 +

∞∑
n=1

Dn (23)

Dn =
(−i)n

n!

∫
d4x′1...d

4x′n〈0|T [V(φI(x
′
1))...V(φI(x

′
n)]|0〉 (24)

N = 〈0|T [UI(∞,−∞)φI(x1)φI(x2)φI(y1)φI(y2)]|0〉 = 1 +

∞∑
n=1

Nn (25)

Nn =
(−i)n

n!

∫
d4x′1...

∫
d4x′n〈0|T [V(φI(x

′
1)...V(φI(x

′
n)

×φI(x1)φI(x2)φI(y1)φI(y2)]|0〉 (26)

In case of φ3-interaction, we will have

D1 = −iλ
∫
d4x′〈0|T [φ3

I(x
′)]|0〉 = 0 (27)

D2 =
(−iλ)2

2!(3!)2

∫
d4x′1

∫
d4x′2〈0|T [φ3

I(x
′
1)φ3

I(x
′
2)]|0〉 (28)

D3 = 0, and etc.

and

N1 = −iλ
∫
d4x′〈0|T [φ3

I(x
′)φI(x1)φI(x2)φI(y1)φI(y2)]|0〉 = 0 (29)

N2 =
(−iλ)2

2!(3!)2

∫
d4x′1

∫
d4x′2〈0|T [φ3

I(x
′
1)φ3

I(x
′
2)...

×φI(x1)φI(x2)φI(y1)φI(y2)]|0〉 (30)

N3 = 0, and etc.
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3.3.4 Wick’s theorem

The theorem state that
”time-ordered product of field operators can be written in terms of all possible

normal-ordering and contraction pairs”
For simple example

T [φ(1)φ(2)φ(3)φ(4)] =: φ(1)φ(2)φ(3)φ(4) : + : φ(1)φ(2) :
︷ ︸︸ ︷
φ(3)φ(4)

+ : φ(1)φ(3) :
︷ ︸︸ ︷
φ(2)φ(4) + : φ(1)φ(4) :

︷ ︸︸ ︷
φ(2)φ(3)

where

〈0| : φ(1)φ(2) : |0〉 = 0, 〈0|
︷ ︸︸ ︷
φ(1)φ(2) |0〉 = ∆(1, 2)

From above we will have

D2 =
(−iλ)2

2!(3!)2

∫
d4x′1

∫
d4x′2 {∆(x′1, x

′
2)∆(x′1, x

′
2)∆x′1, x

′
2)

+∆(x′1.x
′
1)∆(x′1, x

′
2)∆(x′2, x

′
2)} (31)

N2 =
(−iλ)2

2!(3!)2

∫
d4x′1

∫
d4x′2 {[∆(x′1, x

′
2)∆(x′1, x

′
2)∆x′1, x

′
2)

+∆(x′1.x
′
1)∆(x′1, x

′
2)∆(x′2, x

′
2)] [∆(x1, y1)∆(x2, y2)

+∆(x1, y2)∆(x2, y1) + ∆(x1, x2)∆(y1, y2)]

+ [∆(x1, x
′
1)∆(x2, x

′
1)∆(x′1, x

′
2)∆(x′2, y1)∆(x′2, y2)

+∆(x1, x
′
1)∆(x′1, y1)∆(x2, x

′
2)∆(x′2, y2)∆(x′1, x

′
2)

+∆(x1, x
′
1)∆(x′1, y2)∆(x2, x

′
2)∆x′2, y1)∆(x′1, x

′
2)]} (32)

3.3.5 Diagrammatic representations

Our above expression look so complicate, but we can simplify by using Feynman
diagram representation, by first define the field propagator and coupling vertex
diagrams (Feynman rules) as

Figure 1: Feynman rules for φ3-interaction

Then we have
Note that denominator terms will appear in from of disconnected diagrams,

i.e., without legs, while the numerator terms will appear in form of connected
diagrams. i.e. with legs, factor with disconnected diagrams. This results to the
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Figure 2: The first non-zero denominator diagrams D2.

Figure 3: The first non-zero numerator diagrams N2.

cancellation of the disconnected diagrams, left only with connected diagrams
for the S-matrix. By its expression, let us write

Sαβ =

∞∑
n=0

M
(n)
αβ (33)

We will have of the zeroth order terms as

Figure 4: The zero-order term of the S-matrix with connected diagram.

Their expressions are

M (0) = (−i)4

∫
d4x1

∫
d4x2

∫
d4y1

∫
d4y2e

−ip1·x1−ip2·x2+iq1·y1+iq2·y2

×(∂2
x1

+m2)(∂2
x2

+m2)(∂2
y1 +m2)(∂2

y2 +m2)

×{∆(x1, y1)∆(x2, y2) + ∆(x1, y2)∆(x2, y1) + ∆(x1, x2)∆(y1, y2)} (34)

≡M (0)
a +M

(0)
b +M (0)

c (35)

And diagrams of the first order terms as
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Figure 5: The first-order term of S-matrix with connected diagram.

Their expressions are

M (1) = (−i)4 (−iλ)2

2!(3!)2

∫
d4x1

∫
d4x2

∫
d4y1

∫
d4y2

∫
d4x′1

∫
d4x′2...

×e−ip1·x1−ip2·x2+iq1·y1+iq2·y2 ...

×(∂2
x1

+m2)(∂2
x2

+m2)(∂2
y1 +m2)(∂2

y2 +m2)...

×{∆(x1, x
′
1)∆(x2, x

′
1)∆(x′1, x

′
2)∆(x′2, y1)∆(x′2, y2)...

+∆(x1, x
′
1)∆(x′1, y1)∆(x2, x

′
2)∆(x′2, y2)∆(x′1, x

′
2)...

+∆(x1, x
′
1)∆(x′1, y2)∆(x2, x

′
2)∆(x′2, y1)∆(x′1, x

′
2)} (36)

≡M (1)
a +M

(1)
b +M (1)

c (37)

3.4 Diagrams on momentum space

Let us determine

M (0)
a = (−i)4

∫
d4x1

∫
d4x2

∫
d4y1

∫
d4y2e

−ip1·x1−ip2·x2+iq1·y1+iq2·y2

×(∂2
x1

+m2)(∂2
x2

+m2)(∂2
y1 +m2)(∂2

y2 +m2)∆(x1, y1)∆(x2, y2) (38)

We first apply integration by particle two time of the first two differential op-
erators, and then using the fact that

(∂2
y1 +m2)∆(x1, y1) = iδ(4)(x1 − y1), (∂2

y2 +m2)∆(x2, y2) = iδ(4)(x2 − y2)

Then we have

M (0) = (−i)2 1

p2
1 −m2

1

p2
2 −m2

∫
d4x1

∫
d4x2e

−i(p1−q1)·x1−i(p2−q2)·x2 (39)

= (−i)2 1

p2
1 −m2

1

p2
2 −m2

∫
d4x1

∫
d4x2e

−i(p1−q1)·x1−i(p2−q2)·x2

=
−i

p2
1 −m2

−i
p2

2 −m2
(2π)4δ(4)(p1 − q1)(2π)4δ(4)(p2 − q2) (40)

We get two propagators on momentum space together with their energy-momentum

conservation conditions. Similar analysis can be done with M
(0)
b and M

(0)
c , and

receive similar results.
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Next let us determine M
(1)
a , we have

M (1)
a = (−i)4 (−iλ)2

2!(3!)2

∫
d4x1

∫
d4x2

∫
d4y1

∫
d4y2e

−ip1x1−ip2x2+iq1y1+iq2y2

×
∫
d4x′1

∫
d4x′2(∂2

x1
+m2)(∂2

x2
+m2)(∂2

y1 +m2)(∂2
y2 +m2)

×∆(x1, x
′
1)∆(x2, x

′
1)∆(x′1, x

′
2)∆(x′1, y1)∆(x′2, y2) (41)

Using the fact that

(∂2
xi

+m2)∆(xi, x
′
1) = iδ(4)(xi − x′1), i = 1, 2

(∂2
yi +m2)∆(x′2, yi) = iδ(4)(x′2 − yi), i = 1, 2

We get

M (1)
a =

(−iλ)2

2!(3!)2

∫
d4x′1

∫
d4x′2e

−i(p1+p2)·x′
1+i(q1+q2)·x′

2∆(x′1, x
′
2)

=
(−iλ)2

2!(3!)2

∫
d4x′1e

−i(p+1+p2−q1−q2)·x′
1︸ ︷︷ ︸

=(2π)4δ(4)(p1+p2−q1−q2)

∫
d4ye−i(q1+q2)·y∆(y)︸ ︷︷ ︸

=∆(q1+q2)

=
(−iλ)2

2!(3!)2
(2π)4δ(4)(p1 + p2 − q1 − q2)∆(q1 + q2) (42)

Note that the factor 2!(3!)3 will be canceled by the symmetric number of this
diagram, i.e. each diagram will have symmetric factor S(n) which will be deter-
mined from case to case.

3.5 Feynman rules

From the previous subsection, we observe that we can state some set of rules
to write expression from the diagram without any analysis of diagram on con-
figuration space as we have done. This is called Feynman rules on momentum
space, for the case of real scalar φ3-interaction there are

� internal line particle propagator is ∆(p) = i
p2−m2+iε

� interaction vertex is −iλ/3!, derived from interaction potential V(φ)

� insert the condition of energy-momentum conservation

(4π)4δ(4)(p1 + p2 − q1 − q2),

determined from external legs

� insert the symmetry factor Sn of the nth-order connected diagram

9



From example of diagram M
(1)
a ,M

(1)
b and M

(1)
c above, we will have

M (1)
a = (−iλ)2(2π)4δ(4)(p1 + p2 − q1 − q2)∆(p1 + p2) (43)

M
(1)
b = (−iλ)2(2π)4δ(4)(p1 + p2 − q1 − q2)∆(p1 − q1) (44)

M (1)
c = (−iλ)2(2π)4δ(4)(p1 + p2 − q1 − q2)∆(p1 − q2) (45)

Figure 6: First order connected diagrams on momentum space.

3.6 Mandelstam variables

For convenient to do kinematics evaluation of the interaction process, we always
use the Lorentz covariant Mandelstam variables which are defined from generic
2-to-2 particle interaction as

Figure 7: Mandelstam variables.

s = (p1 + p2)2 = (q1 + q2)2 (46)

t = (p1 − q1)2 = (p2 − q2)2 (47)

u = (p1 − q2)2 = (p2 − q1)2 (48)

7→ s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 (49)

We also deal with Stukelberg’s function λ(x, y, z) which is defined as

λ(x, y, z) = x2 + y2 + z2 + 2xy + 2xz + 2yz (50)
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