4 The Cross Section and Decay Rate

In this lecture we come to learn how to compute scattering cross section and
decay rate from the S-matrix.

4.1 The cross section

4.1.1 Definition

Let us prepare the incoming state of particles with some momentum distribution
of the form
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Then we can rewrite the S-matrix to be in the form
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when 0,4 represents amplitude with no interaction amplitude and T, represents
amplitude with interaction. The transition probability from interaction will be
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Using identity
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Assume that the incoming particles have sharp momentum at pq, ps, then we
can assume (4.6) in the form
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This represents transition density rate from the interaction, written in terms of
differential cross section do and particle flux density F.

Since |¥(z)|? = 2F, and the flux F is determined from the rest frame of
particle 2, p = (E1,71),ph = (m2,0), as
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where s is one of Mandelstam variables and A is known as Stuckelberg function
defined as
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From (4.9), we will get the differential cross section
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4.1.2 Invariant phase space integrals

The Lorentz invariant phase space measure is defined in the form
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where the non-covariant form is understood as
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Both forms are alternatively used by convenient.
The total cross section of 2-to-2 particles interaction is then derived from
integration overall final state momenta as
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4.1.3 Center of mass frame

Let the incoming particles approach each other in 3-direction. So that in the
center of mass frame we will have
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Similarly we will have
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4.1.4 Differential cross section

Let us determine Mandelstam t-variable

t=(1—q)*=(E — E3,p—§*=m} +m3 — 2E,E3 + 2|p||7] cos § (4.25)

dt
— dt = 2|pl|qldcosf — dcosf = —— (4.26)

2|p1lq1

From (4.13) above, let us do d*qs integration using delta function of energy-
momentum conservation, we will have
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Then apply d®q; integration using spherical coordinate
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From the argument of the delta function
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Integrate (4.27), using (4.28) and [ d¢ = 2, then we have
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4.2 [Elastic and inelastic processes
4.2.1 Elastic process

From ¢>-interaction at tree level, which is the elastic process, we have
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4.2.2 Inelastic process

Let us determine the model Lagrangian
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We can set the Feynman rules as
o light scalar field propagator (line): Ay(p) = m
o heavy scalar field propagator (dash line): Ay (p) = —yprse

e interaction vertex is —ig
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Figure 4.1: Feynman rules of inelastic process.

The tree level diagrams of ¢¢ — xx interaction are

pi ql pl ql
. ——— h ’
K ~ 7
k ’ ” N
L - = = 4 ~
p2 q2 p2 q2
k=p1-q1 kK'=pl-q2
(a) (b)

Figure 4.2: Tree diagrams of the ¢¢ — xx interaction.

The expressions of the amplitudes are
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After we have used the fact that s + ¢ +u = 2m? + 2M?2. The cross section is
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With
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We will have from above
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We will end up with
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4.3 Decay rate
Let us determine the decay of heavy particle x — ¢¢
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Figure 4.3: The decay x — ¢¢ at first order.

The decay amplitude is
M = —ig(2m)*6™W (p — q1 — g2) = M = —ig (4.38)

The transition probability is determined from Fermi golden rule as
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The transition rate per unit volume is
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This shows that Eq, = £ M and |G| = vV M? — 4m?.
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