5 Quantization of Dirac Spinor Field

5.1 Dirac spinor field

Dirac spinor field ¢ (x) is classical aspects of solution of Dirac equation derived
from Dirac equation. For free field it is written in the form

(19" 0 —m)ip(z) = 0 (5.1)

where ¥ is Dirac gamma matrix satisfies Clifford algebra {y*,~+"} = 2¢g". Let
us define Dirac conjugation as

=610, since (1)1 = 199" = (i7" D, +m) = 0 (5.2)

Multiply (5.1) from the left with ¢ and multiply (5.2) from the right with 1)
and do the summation, we get

WA D o + i7" Optp = Dy (i) = O (5.3)
= O gt =0, j* = ipyrep (5.4)

It is the conserved Dirac current density.
This equation can be derived from the Dirac Lagrangian density of the form

£ = iy, — m)p (5.5)
Under insertion into Euler-Lagrange equation we will have
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The conjugate momentum field m(z) of Jy¢ is

= ipy” = i)t (5.6)

() = Foww

Note that there is no 9yt' term, so that there will be no its conjugate momentum
7t. Then Dirac Hamiltonian will be derived in the form

H=n0yp— L+~ H= /d%?—[ = /d?’x (—iz/;ﬁ’- Vi + mz&/)) (5.7)
Free field solution is derived in the form

3
P(x) = / (27:;3];Ek Z (a(k‘, s)U(k, s)e_ik'm + 0"V (k, s)eik'x)w:Ek (5.8)
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where s is the spin degree of freedom, U(k, s) is the positive energy spinor and
V(k,s) is the negative energy spinor. There are appear in the form

Uk, s) = \/Eker( S ) V(k,s) = \/Eker( Bk o ) (5.9)
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where Yy is regular spinor basis. These U and V satisfy the othonarmality and
completeness relations in the form

ZUT k,$)U(k,s) =2Ey, Y U(k,s)U(k,s) =k +m (5.10)
ZVT k,s)V(k,s)=2Ey, » V(k,s)V(k,s)=F—m (5.11)
where f = ~*k, is known as Dirac slashed. For later using, one can write
m(z) =i (z) = z/dBk Z (b(k s)VT(k,s)e e
(2m)32FE), . ’ ’
+a* (k, U (K, s)e™™) (5.12)
Vi) = [ RS (alh )0 e
x) =1 e 5 a(k,s ,8)e
—b"(k, s)V (k, s)e™) . (5.13)

5.2 Canonical quantization

We just promote the field ¢(z) and its conjugate momentum field 7(z) to be
quantum operators satisfy the equal time anti-commutation relation of the form

{¥(@), m(y)yaomyo = 6 (& — ) (5.14)

when the operator notion with no hat is understood for convenient. Let us check
this by insertion their full expressions form above, we will have
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Let us assign the anti-commutation relations
{a(kvs)a ( /)}:O:{a (kvs)aa ( 35)}
{o(k, s), (’f’ ’)} =0={b(k,5),b" (K, ")}
{a(k:,s), )8 }:Oz{a (k )’ T( )}’
M@ﬁﬂﬂ%§H:@ﬂ%ﬂ(( K)o
{b(kv S)v bT(k/’ S/)} = (277)32Ek5 ( ) s,s’
{a(k,s),b"(K',s")} = 0= {a(k,s),b(k,s")} (5.16)
From (5.17), we will have
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Using the fact that
Ftm=~%o—7 -k+tm, ko=E
After changing sign k — —k of term from the V-spinor, we have

3
{02, 7() Yooy i/§@«*<@:w®@—m (5.18)
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as require.
Next let us determine the Hamiltonian operator of Dirac spinor field. From



(5.7), let us evaluate H time 2° = 0, we will have
d3k d3K’
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After we have ignored the overlapping terms between positive and negative
energy spinors. Integrate [ d®z we will get delta function 6©)(k — &’) and do

[ d®K' integration using this delta function. From Dirac equations of U and V
spinors

(Yky —m)U (k,s) = 0 (V- k)U (K, s) = (Y By, — m)U(k, s)

(Yky +m)V (kys) = 0= (7-k)V (k,s) = (\°Ey +m)V (k, s)

Insertion these relations into (5.20), we can observe the cancellation of the mass
terms. After using completeness relation of the U and V spinors, we will have

3
H= /%Ek ; (aT(k;, s)a(k,s) — b(k, s)b' (k, 5)) (5.20)
/ o 32Ek "Zs: a(k,s) + bl (k, s)b(k, s)]
*/dSkEk(S(‘Q’)(O) (5.21)

5.3 Dirac hole theory

From (5.22), we observe the filled negative energy sea. Dirac was interpreted
as the vacuum energy of fermionic oscillator. Two types of particles was cre-
ated from this, one is particle created by af(k, s) and the other is anti-particle



created as a hole in the sea by bf(k,s). They are created in pair, particle has
positive energy and anti-particle has negative energy. They fulfill momentum
conservation by moving into opposite directions, i.e., particle has momentum k
while anti-particle has momentum —k. They also has opposite charges to fulfill
charge conservation. From this point of view, Dirac particles will be created in
pair from vacuum and also annihilate from pair into the vacuum.
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Figure 5.1: Dirac hole theory.

Let us denote |0) as the fermionic vacuum state, the particle and anti-particle
will be created from this state as

a(ka 5)|0> =0, aT(k7 5)‘0> = |kﬂ 5> (522)
b(k',s')|0) =0, bT(K',s")|0) = |, s") (5.23)
where k' = —k when they are created in pair.

5.4 Spinor field propagators

Let us evaluate the spinor field propagator from time-ordered spinor field oper-
ators as

Ay = O @E)]0)
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The survival terms are

d3k 3K
A(xvy):/(2ﬂ_)32Ek / (27T)32Ek’ ;

{0G° =) 0la(k, s)a (', )]0)U (k, )T (K, e 8"

— 0(y° — 2°)(0[p(K’, s")bt (K, 8)|0)V (K, s")V (K, s)eiik/'y“‘k'm} (5.25)

After using their commutation relations and do integration [ d3k’ using delta
function and do the summation ¥, using delta function d; 5/, we get

3 .
A(xa y) = / (27:§?’I;Elk Z {9(:50 _ yO)U(k, S)Z'j(]g7 S)efzk'(wfy)
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—0(y° — 2°)V (k, )V (K, s)e*ik%y*m)} (5.26)

Using the fact that

ZU(k;,s)U(k:,s)zk—i—m

From DE : (f +m)V(k,s) =0~ m = —

Then we have from above

Az, y) = / (d?’k [G(CUO — )k + m)e—ik'(ﬂﬂ—y)

2m)32E},

+0(y° — 2®)(f = m)e™ 0] (5.27)

d*k Z(k + m) —ik-(z—y) 7’(% — m) —ik-(y—w)

= Alzy) = /(277)4 Lﬂ—E,f—I—z’ee +w2—E,§—|—iee

- /ﬂA(k)e—ik(m—y) (5.28)
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where
Alk) = AD(E)+ AT (k) (5.29)
i(f +m) .

A(+) (lﬂ) = m, partlcle propagator (530)
A(*)(k) = M, anti — particle propagator (5.31)

k2 —m?2 + ie

After we have used the fact that By = VA2 +m?2 and k2 = w? — k2. Note that
particle propagator moves forward in time, while anti-particle propagator moves
backward in time.



5.5 LSZ reduction formula of spinor field
From free field solution

3
Ylz) = /(273%& > alk, $)U(k, s)e™ ™% + b (k, 5)V (k, s)e™]

w=Ey
S

We observe that

/ Bret Ty (z) = % Z [a(k,s)U(k,s) + eQiEk”bf(—k,s)V(—k,s)} (5.32)
o / B U (k' )(z) = ﬁ zsja(k,s)[UT(k,s’)U(k,s)
=2F,0,.
+e2BT W () Uk, sV (—k, s)] (5.33)
=0

Then we have

alk,s) = /d?’xeik'mUT(k,s)z/J(x)E/dsxeik“U(k,s)vow(x) (5.34)

al(k,s) = /d?’xe_ik‘“’i/;(m)vOU(k,s) (5.35)
b(k,s) = /d3meik"”f/(k‘,s)70w(x) (5.36)
b(kys) — / B le= 5OV (k, ) (5.37)

This we 11 lead to the replacements
os,) = al (k,)l0) = [ e (o0 Uk, 90
= [ dtat,, {00} Uk 5)0)
_ / d'e {zz(x) (Oaye™* ) AOU (K, 5) + e~ (&(x)%m) AU (k, s)} 10) (5.38)
Using the fact that

(1700 + i7'0; — m)e” T =0 = dpe T = —i(in'0; + m)yle kT

‘We then have

|k, s,+) = —i/d4:1ce_ik"” {&(m)(w“%u +m)U(k, s)} |0) (5.39)



Similarly we can have
(b 4] = Ola(ks) = [ 2Tk, 0l@)  (5.0)
~ / 20 {5 2T (k, 5)7° (0100t ()}
= [ ate {(e ) Dk PP OR() + T 51 000w (540
From DE for E < 0:
(i1°0 + 1710, + M) T — 0 s D™ = —in®(—inid; — m)elkT
Then we have from (5.4)
(k,s,+| = —i/d%eik'mz’]k, 3) (i7", — m) (0| () (5.42)
In case of anti-particle state
|k, 5, =) = bl (k, )[0) = /d3xe"’“"“V(k,s>v°w(:c>|0> (5.43)
~ / a2 {7V (k, 517°0(2)} [0)
= [t (@) Vi, 5 U (@)0) + €T (k) Do) 0)}
= fi/d‘lxeik'mf/(k,s)(i’y"au —m)(x)|0)  (5.44)
and
ey 5, —[b(k, 8) = —i / dae 01 (@) ("D o+ m)V(kys)  (5.45)

For generic S-matrix of 2-particle to 2-particle scattering we can have its LSZ
reduction formula in the form
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