7 Vector Field Quantization

7.1 Vector field Lagrangian and Hamiltonian

For massless Maxwell vector field $A^{\mu}(x)$, its Lagrangian is written term of field strength tensor

$$F^{\mu\nu}=\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu}\mapsto F^{0i}=-E^{i},\ F^{ij}=\epsilon^{ijk}B^{k},\ F^{\mu}=-F^{\nu\mu} \eqno(7.1)$$

$$\mapsto \mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} = -\frac{1}{2} \partial_{\mu} A_{\nu} F^{\mu\nu} \tag{7.2}$$

$$EOM \rightarrow \partial_{\mu}F^{\mu\nu} = \partial^{2}A^{\nu} - \partial^{\nu}(\partial_{\mu}A^{\mu}) = 0$$
 (7.3)

This Lagrangian is invariant under gauge transformation $A^{\mu} \to A'^{\mu}(x) = A^{\mu} + \partial^{\mu}\chi(x)$ for any scalar function $\chi(x)$, and also the action $S[A^{\mu}]$ is invariant. Gauge fixing condition need to be applied for a physical vector field, the commonly used conditions are

- Lorentz condition: $\partial_{\mu}A^{\mu}(x) = 0$
- Coulomb condition: $\nabla \cdot \vec{A}(x) = 0$

Anyway they give the same result, so that for convenient we will work under Coulomb condition.

The conjugate momentum field is

$$\pi^{\mu} = \frac{\partial \mathcal{L}}{\partial \partial_0 A_{\mu}} = -F^{0\mu} = -(\partial^0 A^{\mu} - \partial^{\mu} A^0) \mapsto F^{00} = 0, \ \pi^0 = 0$$
 (7.4)

This means that the temporal component of the vector field $A^0 = constant$ is not dynamical field, this results with zero momentum in this direction. For convenient we will set $A^0 = 0$, so that $A^{\mu}(x) = (0, \vec{A}(x))$ and $\pi^{\mu} = -\partial_0 A^{\mu}$. And the electric and magnetic fields can be calculated from its spatial part as

$$\vec{E}(x) = -\partial_0 \vec{A}(x), \ \vec{B}(x) = \nabla \times \vec{A}(x) \tag{7.5}$$

After Legendre transformation of the Lagrangian, we get vector field Hamiltonian in the form

$$\mathcal{H} = \pi^{i} \partial_{0} A_{i} - \mathcal{L} = -F^{0i} F_{0i} + \frac{1}{2} F^{0i} F_{0i} + \frac{1}{2} F^{ij} F_{ij}$$

$$= \frac{1}{2} (E^{i} E^{i} + B^{k} B^{k})$$

$$H = \int d^{3} x \frac{1}{2} (\vec{E} \cdot \vec{E} + \vec{B} \cdot \vec{B})$$

$$(7.6)$$

From its EOM, its trial free field solution is

$$A^{\mu} \sim a^{\mu}(k,\lambda)e^{-ik\cdot x} \mapsto k^2 a^{\mu}(k,\lambda) = 0 \to \omega^2 - \vec{k} \cdot \vec{k} = 0 \tag{7.8}$$

$$\omega^2 - \omega_k^2 = 0, \omega_k = |\vec{k}| \tag{7.9}$$

Then its general solution is written in term of Fourier transformation, with constraint condition of its dispersion, as

$$A^{\mu}(x) = \int \frac{d^3k}{(2\pi)^3} \int \frac{d\omega}{2\pi} \sum_{\lambda} \left(a^{\mu}(k,\lambda) e^{-ik\cdot x} + a^{*\mu}(k,\lambda) e^{ik\cdot x} \right)$$

$$\times (2\pi)\delta(\omega^2 - \omega_k^2)\theta(\omega)$$

$$= \int \frac{d^3k}{(2\pi)^3 2\omega_k} \sum_{\lambda} \left(a^{\mu}(k,\lambda) e^{-ik\cdot x} + a^{*\mu}(k,\lambda) e^{ik\cdot x} \right)_{\omega = \omega_k}$$

$$(7.11)$$

After we have used the identity of the delta function. Let us assign the polarization tensor

$$a^{\mu}(k,\lambda) = \epsilon^{\mu}(k,\lambda)a(k) \mapsto \sum_{\lambda} \epsilon^{\mu}(k,\lambda)\epsilon^{\nu}(k',\lambda) = -g^{\mu\nu}\delta_{k,k'}$$
 (7.12)

From Coulomb condition, we will have $\epsilon^{\mu} = (0, \hat{\epsilon})$, and $\vec{k} \cdot \hat{\epsilon} = 0$. Its conjugate momentum field, $\pi^{\mu} = (0, \vec{\pi}(x))$, will appear in the form

$$\vec{\pi}(x) = -\partial_0 \vec{A}(x) = \vec{E}(x) = \frac{i}{2} \int \frac{d^3k}{(2\pi)^3} \sum_{\lambda} \hat{\epsilon}(k,\lambda) \left\{ a(k,\lambda) e^{-ik \cdot x} - a^*(k,\lambda) e^{ik \cdot x} \right\}_{\omega = \omega_k}$$
(7.13)

with $\pi^0 = 0, \pi^i(x) = E^i(x)$. We also have

$$\nabla \cdot \vec{A}(x) = i \int \frac{d^3k}{(2\pi)^3 2\omega_k} \sum_{\lambda} \vec{k} \cdot \hat{\epsilon}(k,\lambda) \left[a(k,\lambda) e^{-ik \cdot x} - a^*(k,\lambda) e^{ik \cdot x} \right]_{\omega = \omega_k}$$
(7.14)
$$\vec{B}(x) = \nabla \times \vec{A}(x) = i \int \frac{d^3k}{(2\pi)^3 2\omega_k} \sum_{\lambda} (\vec{k} \times \hat{\epsilon}(k,\lambda)) \left[a(k,\lambda) e^{-ik \cdot x} - a^*(k,\lambda) e^{ik \cdot x} \right]_{\omega = \omega_k}$$
(7.15)

7.2 Canonical quantization

We promote the vector field and its conjugate momentum field to be field operators, satisfy an equal time commutation relation

$$[A^{\mu}(x), \pi^{\nu}(y)]_{x^{0}=y^{0}} = -ig^{\mu\nu}\delta^{(3)}(\vec{x} - \vec{y})$$
(7.16)

From free field solution, let us determine

$$[A^{\mu}(x), \pi^{\nu}(y)]_{x^{0}=y^{0}=0} = \frac{i}{2} \int \frac{d^{3}k}{(2\pi)^{3} 2\omega_{k}} \int \frac{d^{3}k'}{(2\pi)^{3}} \sum_{\lambda,\lambda'} \epsilon^{\mu}(k,\lambda) \epsilon^{\nu}(k',\lambda')$$

$$\times \left[\left(a(k,\lambda)e^{i\vec{k}\cdot\vec{x}} + a^{\dagger}(k,\lambda)e^{-i\vec{k}\cdot\vec{x}} \right), \left(a(k',\lambda')e^{i\vec{k}'\cdot\vec{y}} - a^{\dagger}(k'\lambda')e^{-i\vec{k}'\cdot\vec{y}} \right) \right]$$

$$= \frac{i}{2} \int \frac{d^{3}k}{(2\pi)^{3} 2\omega_{k}} \int \frac{d^{3}k'}{(2\pi)^{3}} \sum_{\lambda,\lambda'} \epsilon^{\mu}(k,\lambda) \epsilon^{\nu}(k',\lambda')$$

$$\times \left\{ \left[a(k,\lambda), a(k',\lambda') \right] e^{i\vec{k}\cdot\vec{x}+i\vec{k}'\cdot\vec{y}} - \left[a(k,\lambda), a^{\dagger}(k',\lambda') \right] e^{i\vec{k}\cdot\vec{x}-i\vec{k}'\cdot\vec{y}} \right\}$$

$$+ \left[a^{\dagger}(k,\lambda), a(k',\lambda') \right] e^{-i\vec{k}\cdot\vec{x}+i\vec{k}'\cdot\vec{y}} - \left[a^{\dagger}(k,\lambda), a^{\dagger}(k',\lambda') \right] e^{-i\vec{k}\cdot\vec{x}-i\vec{k}'\cdot\vec{y}} \right\}$$
 (7.17)

Let us assign the following commutation relations

$$[a(k,\lambda), a(k',\lambda')] = 0 = [a^{\dagger}(k,\lambda), a^{\dagger}(k',\lambda')] \tag{7.18}$$

$$[a(k,\lambda), a^{\dagger}(k',\lambda')] = (2\pi)^3 2\omega_k \delta_{\lambda\lambda'} \delta^{(3)}(\vec{k} - \vec{k}')$$
(7.19)

From above we have

$$[A^{\mu}(x), \pi^{\nu}(y)]_{x^{0}=y^{0}=0} = -\frac{i}{2}g^{\mu\nu} \int \frac{d^{3}k}{(2\pi)^{3}} \left\{ e^{i\vec{k}\cdot(\vec{x}-\vec{y})} + e^{-i\vec{k}\cdot(\vec{x}-\vec{y})} \right\}$$
$$= -ig^{\mu\nu}\delta^{(3)}(\vec{x}-\vec{y}) \qquad (7.20)$$

After we have changed sign $\vec{k} \to -\vec{k}$ on the first term.

Next let us calculate the Hamiltonian operator, at $x^0 = y^0 = 0$, as

$$H = \frac{1}{2} \int d^3x \left(\vec{E}(x) \cdot \vec{E}(x) + \vec{B}(x) \vec{B}(x) \right)$$

$$= \frac{1}{2} \int d^3x \int \frac{d^3k}{(2\pi)^3 2\omega_k} \int \frac{d^3k'}{(2\pi)^3 2\omega_{k'}} \sum_{\lambda,\lambda'}$$

$$\times \left\{ -\omega_k \omega_{k'} \hat{\epsilon}(k,\lambda) \cdot \hat{\epsilon}(k',\lambda') [(a(k,\lambda)e^{i\vec{k}\cdot x} - a^{\dagger}(k,\lambda)e^{-i\vec{k}\cdot \vec{x}}] \right.$$

$$\times \left[a(k',\lambda')e^{i\vec{k}'\cdot \vec{x}} - a^{\dagger}(k',\lambda')e^{-i\vec{k}'\cdot \vec{x}} \right]$$

$$- (\vec{k} \times \hat{\epsilon}(k,\lambda)) \cdot (\vec{k}' \times \hat{\epsilon}(k',\lambda')) [(a(k,\lambda)e^{i\vec{k}\cdot x} + a^{\dagger}(k,\lambda)e^{-i\vec{k}\cdot \vec{x}}] \right.$$

$$\times \left[a(k',\lambda')e^{i\vec{k}'\cdot \vec{x}} + a^{\dagger}(k',\lambda')e^{-i\vec{k}'\cdot \vec{x}} \right]$$

$$= \frac{1}{2} \int d^3x \int \frac{d^3k}{(2\pi)^3 2\omega_k} \int \frac{d^3k'}{(2\pi)^3 2\omega_{k'}} \sum_{\lambda,\lambda'} \hat{\epsilon}(k,\lambda) \cdot \hat{\epsilon}(k',\lambda')$$

$$\times \left\{ -\omega_k \omega_{k'} \left(a(k,\lambda)a(k',\lambda')e^{i(\vec{k}+\vec{k}')\cdot \vec{x}} - a(k,\lambda)a^{\dagger}(k',\lambda')e^{i(\vec{k}-\vec{k}')\cdot \vec{x}} \right.$$

$$-a^{\dagger}(k,\lambda)a(k',\lambda')e^{-i(\vec{k}-\vec{k}')\cdot \vec{x}} + a^{\dagger}(k,\lambda)a^{\dagger}(k',\lambda')e^{-i(\vec{k}+\vec{k}')\cdot \vec{x}} \right.$$

$$-a^{\dagger}(k,\lambda)a(k',\lambda')e^{i(\vec{k}-\vec{k}')\cdot \vec{x}} - a(k,\lambda)a^{\dagger}(k',\lambda')e^{i(\vec{k}-\vec{k}')\cdot \vec{x}}$$

$$-a^{\dagger}(k,\lambda)a(k',\lambda')e^{-i(\vec{k}-\vec{k}')\cdot \vec{x}} + a^{\dagger}(k,\lambda)a^{\dagger}(k',\lambda')e^{-i(\vec{k}+\vec{k}')\cdot \vec{x}} \right.$$

$$-a^{\dagger}(k,\lambda)a(k',\lambda')e^{-i(\vec{k}-\vec{k}')\cdot \vec{x}} + a^{\dagger}(k,\lambda)a^{\dagger}(k',\lambda')e^{-i(\vec{k}+\vec{k}')\cdot \vec{x}} \right)$$

After using identity $[\vec{k} \times \hat{\epsilon}(k,\lambda)] \cdot [\vec{k'} \times \hat{\epsilon}(k',\lambda')] = [\vec{k} \cdot \vec{k'}][\hat{\epsilon}(k,\lambda) \cdot \hat{\epsilon}(k',\lambda')]$, under Coulomb condition. Integrate $\int d^3x$ we will get delta functions. Integrate d^3k' using delta function, using orthogonality of polarization $\hat{\epsilon}(k,\lambda)$ and sum overall polarization λ' , and using the fact that $\omega_k = |\vec{k}|$. We have cancellation terms when $\vec{k'} = -\vec{k}$, we have contribution terms when $\vec{k'} = \vec{k}$. Finally we have

$$H = \frac{1}{2} \int \frac{d^3k}{(2\pi)^3 2\omega_k} \omega_k \sum_{\lambda} [a(k,\lambda)a^{\dagger}(k,\lambda) + a^{\dagger}(k,\lambda)a(k,\lambda)]$$
 (7.22)

$$= \int \frac{d^3k}{(2\pi)^3 2\omega_k} \omega_k \sum_{\lambda} a^{\dagger}(k,\lambda) a(k,\lambda) + 2 \cdot \frac{1}{2} \int d^3k \delta^{(3)}(0)$$
 (7.23)

where the last term is an infinite vacuum energy, without particle. We can get rid of this energy by defining normal ordering of the Hamiltonian, and define the vacuum state $|o\rangle$ in which particle can be created from and destroyed into as

$$a(k,\lambda)|0\rangle = 0, \ a^{\dagger}(k,\lambda)|0\rangle = |k,\lambda\rangle$$
 (7.24)

$$: H := \int \frac{d^3k}{(2\pi)^3 2\omega_k} \omega_k \sum_{\lambda} a^{\dagger}(k,\lambda) a(k,\lambda)$$
 (7.25)

This shows that quantum of vector field is an infinite set of bosonic harmonic oscillators.

7.3 Vector field propagator

Feynman propagator of the vector field is

$$\Delta^{\mu\nu}(x-y) = \langle 0|T[A^{\mu}(x)A^{\nu}(y)]|0\rangle = \int \frac{d^{3}k}{(2\pi)^{3}2\omega_{k}} \int \frac{d^{3}k'}{(2\pi)^{3}2\omega_{k'}} \sum_{\lambda,\lambda'} e^{\mu}(k,\lambda)\epsilon^{\nu}(k',\lambda') \left\{ \theta(x^{0}-y^{0})\langle 0|a(k,\lambda)a^{\dagger}(k',\lambda')|0\rangle e^{-ik\cdot x + ik'\cdot y} + \theta(y^{0}-x^{0})\langle 0|a(k',\lambda')a^{\dagger}(k,\lambda)|0\rangle e^{-ik'\cdot y + ik\cdot x} \right\}$$

$$= -g^{\mu\nu} \int \frac{d^{3}k}{(2\pi)^{3}2\omega_{k}} \left[\theta(x^{0}-y^{0})e^{-ik\cdot (x-y)} + \theta(y^{0}-x^{0})e^{ik\cdot (x-y)} \right]$$

$$= -g^{\mu\nu} \int \frac{d^{3}k}{(2\pi)^{3}} \int \frac{d\omega}{2\pi} \frac{i}{k^{2} + i\epsilon} e^{ik\cdot (x-y)}$$
 (7.26)

This means that

$$\Delta^{\mu\nu}(k) = \frac{-ig^{\mu\nu}}{k^2 + i\epsilon} \tag{7.27}$$

7.4 LSZ reduction formula

From free vector field solution and its cojugate momentum field, we can have

$$\int d^3x e^{-i\vec{k}\cdot\vec{x}} \hat{\epsilon}(k,\lambda) \vec{A}(x) = \int \frac{d^3k'}{(2\pi)^3 2\omega_{k'}} \sum_{\lambda'} \hat{\epsilon}(k,\lambda) \hat{\epsilon}(k',\lambda')
\times [a(k',\lambda')e^{-i\omega_{k'}x^0} \int d^3x e^{i(\vec{k}'-\vec{k})\cdot\vec{x}}
+ a^{\dagger}(k',\lambda')e^{i\omega_{k'}x^0} \int d^3x e^{-i(\vec{k}'+\vec{k})\cdot\vec{x}}]
= \frac{1}{2\omega_k} [a(k,\lambda)e^{-i\omega_kx^0} + a^{\dagger}(-k,\lambda)e^{i\omega_kx^0}]$$

$$\int d^3x e^{-i\vec{k}\cdot\vec{x}} \hat{\epsilon}(k,\lambda) (-\partial_0 \vec{A}(x)) = \frac{i}{2} \int \frac{d^3k'}{(2\pi)^3} \sum_{\lambda'} \hat{\epsilon}(k,\lambda) \hat{\epsilon}(k',\lambda')
\times [a(k',\lambda')e^{-i\omega_{k'}x^0} \int d^3x e^{i(\vec{k}'-\vec{k})\cdot\vec{x}}
- a^{\dagger}(k',\lambda')e^{i\omega_{k'}x^0} \int d^3x e^{-i(\vec{k}'+\vec{k})\cdot\vec{x}}]
= \frac{i}{2} [a(k,\lambda)e^{-i\omega_kx^0} - a^{\dagger}(-k,\lambda)e^{i\omega_kx^0}]$$
(7.29)

Then we have

$$a(k,\lambda) = \int d^3x e^{ik\cdot x} \hat{\epsilon}(k,\lambda) [\omega_k + i\partial_0] \vec{A}(x) \equiv \int d^3x e^{ik\cdot x} \hat{\epsilon}(k,\lambda) i \overleftrightarrow{\partial}_0 \vec{A}(x)$$

$$= \int d^4x \partial_0 \left\{ e^{ik\cdot x} \hat{\epsilon}(k,\lambda) i \overleftrightarrow{\partial}_0 \vec{A}(x) \right\}$$

$$= \int d^3x \hat{\epsilon}(k,\lambda) \left\{ (-i\partial_0^2 e^{ik\cdot x}) \vec{A}(x) + e^{ik\cdot x} i\partial_0^2 \vec{A}(x) \right\}$$

$$\mapsto a(k,\lambda) = i \int d^3x e^{ik\cdot x} \hat{\epsilon}(k,\lambda) \partial_x^2 \vec{A}(x)$$

$$(7.30)$$

After we have used vector field EOM

$$\partial_x^2 e^{ik \cdot x} = (\partial_0^2 - \nabla_x^2) e^{ik \cdot x} = 0 \mapsto \partial_0^2 e^{ik \cdot x} = \nabla_x^2 e^{ik \cdot x}$$

Its conjugation is

$$a^{\dagger}(k,\lambda) = -i \int d^4x e^{-ik \cdot x} \hat{\epsilon}(k,\lambda) \partial_x^2 \vec{A}(x)$$
 (7.31)

The incoming state of a single photon is

$$|k,\lambda\rangle = a^{\dagger}(k,\lambda)|0\rangle = -i\int d^4x e^{-ik\cdot x}\hat{\epsilon}(k,\lambda)\partial_x^2 \vec{A}(x)|0\rangle$$
 (7.32)

$$\langle k, \lambda | = \langle 0 | a(k, \lambda) = i \int d^4x e^{ik \cdot x} \hat{\epsilon}(k, \lambda) \partial_x^2 \langle 0 | \vec{A}(x) \rangle$$
 (7.33)

7.5 Scalar quantum electrodynamics (ScQED)

The model Lagrangian of ScQED is

$$\mathcal{L} = \partial_{\mu}\phi^{*}(x)\partial^{\mu}\phi(x) - m^{2}\phi^{*}(x)\phi(x) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - qj_{\mu}(x)A^{\mu}(x)$$
 (7.34)

$$j_{\mu}(x) = -i[\phi^*(x)\partial_{\mu}\phi(x) - \phi(x)\partial_{\mu}\phi^*(x)] \qquad (7.35)$$

where $j_{\mu}(x)$ is complex scalar current density.

ScQED Feynman rules can be assigned as in the following, See figure (6.1).

- scalar propagator is $\Delta_s(p) = \frac{-i}{p^2 m^2 + i\epsilon}$
- photon propagator is $\Delta^{\mu\nu}(p) = \frac{-ig^{\mu\nu}}{p^2 + i\epsilon}$
- interaction vertex is $-ie(p-p')^{\mu}$, where p^{μ} is incoming scalar and p'^{μ} is outgoing scalar momenta
- incoming and outgoing (real) photon polarization $\epsilon^{\mu}(p,\lambda)$
- symmetry factor is 1 at each vertex.

Figure 7.1: ScQED Feynman rules.

Let us determine the Compton scattering in ScQED, see figure (6.2)

Figure 7.2: Tree diagrams of Compton scattering in ScQED.

The corresponding amplitudes are

$$\mathcal{M}_{a} = -e^{2} \epsilon^{\mu}(p_{1}, \lambda_{1}) \epsilon^{\nu}(q_{1}, \lambda_{2}) p_{1\mu} \frac{i}{(p_{1} + p_{2})^{2} - m^{2}} p_{4\nu} = -ie^{2} \frac{p_{1} \cdot p_{4}}{s - m^{2}} \delta_{\lambda_{1}\lambda_{2}}(7.36)$$

$$\mathcal{M}_{b} = -e^{2} \epsilon^{\mu}(p_{1}, \lambda_{1}) \epsilon^{\nu}(q_{2}, \lambda_{2}) p_{1\mu} \frac{i}{(p_{1} - p_{3})^{2} - m^{2}} p_{4\nu} = -ie^{2} \frac{p_{1} \cdot p_{4}}{t - m^{2}} \delta_{\lambda_{1}\lambda_{2}}(7.37)$$

The amplitude squared will be determined with sum overall outgoing polarization and averaged overall incoming polarization as

$$\overline{|\mathcal{M}|^2} = \frac{1}{2} \sum_{\lambda_1, \lambda_2} |\mathcal{M}_a + \mathcal{M}_b|^2$$

$$= \frac{e^4}{2} (p_1 \cdot p_4)^2 \left\{ \frac{1}{(s-m^2)^2} + \frac{2}{(s-m^2)(t-m^2)} + \frac{1}{(t-m^2)^2} \right\}$$

$$= \frac{e^4}{8} \frac{u^2}{4} \left(\frac{1}{s-m^2} + \frac{1}{t-m^2} \right)^2 = \frac{e^4}{32} \frac{(2m^2 - s - t)^4}{(s-m^2)^2(t-m^2)^2}$$
 (7.38)