7 Vector Field Quantization

7.1 Vector field Lagrangian and Hamiltonian

For massless Maxwell vector field A*(z), its Lagrangian is written term of field
strength tensor
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This Lagrangian is invariant under gauge transformation A* — AM(x) = A* +
O x(x) for any scalar function x(z), and also the action S[A*] is invariant.

Gauge fixing condition need to be applied for a physical vector field, the com-
monly used conditions are

e Lorentz condition: 0,A*(z) =0
e Coulomb condition: V - A(z) =0

Anyway they give the same result, so that for convenient we will work under
Coulomb condition.
The conjugate momentum field is
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This means that the temporal component of the vector field A° = constant
is not dynamical field, this results with zero momentum in this direction. For
convenient we will set A% = 0, so that A*(z) = (0, A(z)) and 7+ = —dyA¥.
And the electric and magnetic fields can be calculated from its spatial part as

E(z) = —00A(z), B(z) =V x A(z) (7.5)

After Legendre transformation of the Lagrangian, we get vector field Hamil-
tonian in the form
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From its EOM, its trial free field solution is
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Then its general solution is written in term of Fourier transformation, with
constraint condition of its dispersion, as
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After we have used the identity of the delta function. Let us assign the polar-
ization tensor

at(k, ) = e*(k, Na(k) — Ze“ (k, N’ (K, ) = —g" O o (7.12)

From Coulomb condition, we will have e = (0,¢), and k - ¢ = 0.
Its conjugate momentum field, 7* = (0, 7(x)), will appear in the form
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with 70 = 0, 7(z) = E%(x). We also have
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7.2 Canonical quantization

We promote the vector field and its conjugate momentum field to be field oper-
ators, satisfy an equal time commutation relation
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From free field solution, let us determine
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Let us assign the following commutation relations

[a(k,\),a(k',N)] =0=[af(k,\),al (K, \)] (7.18)

From above we have

v Lo Pk ik-(F—7 —ik-(F—7
(4 (@). 7 (@)oo = 50" [ i { R R0

= —ig"s® (& —7)  (7.20)

After we have changed sign k — —Fk on the first term.
Next let us calculate the Hamiltonian operator, at 2% = 4° = 0, as

H=1 / @z (B(x) - Bx) + B)B())
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After using identity [k x é(k, \)] - [F x é(k', N)] = [k - K'][e(k, \) - é(k', X')], under
Coulomb condition. Integrate [ d*z we will get delta functions. Integrate d>k’
using delta function, using orthogonality of polarization é(k, A) and sum overall
polarization X', and using the fact that wy = |k|. We have cancellation terms

when k' = —I;:, we have contribution terms when k' = k. Finally we have
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where the last term is an infinite vacuum energy, without particle. We can get
rid of this energy by defining normal ordering of the Hamiltonian, and define
the vacuum state |o) in which particle can be created from and destroyed into
as

a(k, \)|0) = 0, af(k,N\)]0) = |k, \) (7.24)
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This shows that quantum of vector field is an infinite set of bosonic harmonic
oscillators.

7.3 Vector field propagator
Feynman propagator of the vector field is
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This means that
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7.4 LSZ reduction formula

From free vector field solution and its cojugate momentum field, we can have
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Then we have
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Its conjugation is
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The incoming state of a single photon is
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7.5 Scalar quantum electrodynamics (ScQED)
The model Lagrangian of ScQED is
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where j,(z) is complex scalar current density.
ScQED Feynman rules can be assigned as in the following, See figure (6.1).

e scalar propagator is As(p) = pzTig_H.e
—igh?

e photon propagator is A*Y(p) = eEwr

e interaction vertex is —ie(p — p')*, where p# is incoming scalar and p’* is
outgoing scalar momenta

e incoming and outgoing (real) photon polarization e*(p, \)

e symmetry factor is 1 at each vertex.
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Figure 7.1: ScQED Feynman rules.

Let us determine the Compton scattering in ScQED, see figure (6.2)
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Figure 7.2: Tree diagrams of Compton scattering in ScQED.

The corresponding amplitudes are
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The amplitude squared will be determined with sum overall outgoing polariza-

tion and averaged overall incoming polarization as
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