9 One-Loop Corrections of Scalar ¢3-Interaction

9.1 One-loop diagrams

The major contribution of one-loop level connected diagrams of ¢¢p — ¢¢ inter-
action in scalar ¢-interaction appear in figure (9.1).

Figure 9.1: Major contribution of one-loop level diagrams.

There are field propagator correction in figure (9.1a,b), vertex correction in fig-

ure (.1c

), tadpole diagram in figure (9.1d), and box diagram in figure (9.1le).

The LSZ reduction expression of the amplitude of figure (9.1b) is

M

(—i)* ((;;‘ZZ / d'z, / Ay / dy / dtys

><e"pl'm_z”?'““‘ll'y1+“12'y2/d421/d4z2/d423/d4z4

x (02, +m?)(02, +m®) (02, +m?)(02, + m?)
XA(JZl,Zl)A(IE ) (Zl,ZQ)A(ZQ,Zg)
Al(z3, 22) A(24, Y1) A(24, Y2) (9.1)

A(
z) (7224' /d421/d 22/d423/d z4€ Uprtpa)ztilaitan)-2a
(
—i)*

22, 23 22, 2’3 23, 24

15
(_Zg 4 4 4 4, —i(p1+p2)-z1+i(qi+qz2)-za
@)l d*zy | d7z9 | d*z3 [ d*z4e

d'ky [ dke [ dks [ d'ks
X/(27r)4/(277)4/(27r)4/(2ﬂ_) A(k1)A(k2)A(ks)Aks)

Xe’ikl-(Zl—Z2)+ik2-(Z2—Z3)+ik3-(22—23)+ik4-(23—24) (92)




_ 71‘4(*2'9)4 d*ky [ d*ke [ dks [ dk4
= 0 gha / (2 / (2 / (2 / (2

XA(kl)A(kQ)A(kg)A(k4) / d4216*i(l71+p2*k1)~z1

=(2m)46™ (p1+p2—k1)

X\/d42267i(k17k)27k?3)~22\/d42367i(k)27k}37’€4)'23

=(2m)48®) (ks—ka—k1)  =(2m)46@ (ks—ko+ka)

% /d4z4e*i(k4*lh*tI2)'24 (9.3)

=(2m)46™ (ka—q1—q2)
_ (_Z-)4 (_ig)4
(31)44!

x / gf)iA(pl ) A(k)A(r + Py — ka)A(pr +ps)  (9.4)

(277)45(4) (p1+p2—q1 —q2)

Note that ko is called the loop momentum, and what we have derived in
(9.5) is an expression of one-loop diagram on momentum space with integration
overall loop momentum. So that we have to add additional Feynman rules for
loop diagram in momentum space with

e integrate overall loop momentum.

We may pay attention of our study on loop corrections of field propagator and
interaction vertex, see figure (9.2), which will be developed to be renormalization
process of field model parameters to be the physical parameters for measurement.
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Figure 9.2: One-loop correction of field propagator and interaction vertex.




9.2 Field propagator correction and self-energy

The loop correction of field propagator is called self-energy, —iX(k?), in general
we can write

A=Ag+ Ao+ Aog(—iX)Ag + Ag(—iX)Ag(—iX)Ag + ...
= Ag 4+ Ag(—1X) (Ag + Ag(—iX)Ag + ...)
= A=Ag+ Ag(—iX)A  (9.5)
Ao(Ag ' +iX)A =Ag = A7 = A +4iY (9.6)
With Ayt = —i(p? — m? +ie) = A7 = —i(p> —m? — X(p?) +ie)  (9.7)
What we have derived is called Dyson equation. Within the perturbation theory,
i.e. loop expansion, we can write
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# Loop n=1

For example of one-loop self energy X(Y)(k), its diagram on momentum space
with truncated external leg field propagators appear in figure (9.3).
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Figure 9.3: One-loop self-energy diagram.
Its expression is
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Apply with Feynman integral formula
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We will have from above
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Expand the denominator term
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and shift loop momentum k' — k' 4+ (1 — )k, then we have
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Next step w apply Wick’s rotation of Minkowski momentum k*(u =0,1,2,3)
into Euclidean momentum k*(i = 1,2,3,4)
KO — ik* — d*K — id*k and k? = —k?
Doing Euclidean momentum integration within spherical coordinate
d*k = kKPdkdQy = %fc?dl?dm

From (9.11), we have
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We have UV divergence of integration on the first term. To cure this we just
apply the cutoff momentum A2, with A2 — oo, to the upper limit of the inte-
gration, then we have
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Note that 4 is solid angle or surface area of unit sphere in d-dimensions and
generally equal to
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9.3 Vertex correction
Within perturbation theory, i.e. loop expansion, we can write vertex correction
as
o0
> ™, with @ =1 (9.14)
#loop=0

Let us determine the one-loop vertex correction diagram, with labeled momen-
tum and truncated external field propagator legs as appear in figure (9.4).



Figure 9.4: One-loop vertex correction diagram.

Its expression is
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Applying with Wick’s rotation from Minkowski momentum into Euclidean mo-
mentum, and do the integration in spherical coordinates, then we have
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There is no divergence in one-loop vertex correction. The one-loop vertex will
be written in the form

Q
= —igl ~ —ig (1 + g224l(p1,p2,m2)> (9.19)

9.4 Methods of loop momentum integral regularization

Major problem of loop momentum integration is UV divergence. We cure this
problem by regularize the integral with momentum cutoff at high energy. There
are other loop momentum integral regularization methods always used in quan-
tum field calculation.

e Pauli-Villars regularization: Let us determine the integral
d*k i i
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We known from above that this integral has UV divergence. To get rid it,
we replace one of the field propagator in the form
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Now the integral I(p?) will become
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It is divergence free as we have observe in (9.16-18). This method were
introduced by W. Pauli and F. Villars in (1949).!

e Dimensional regularization: Since the divergence appears in d = 4
dimensions. We can we can get oblique it by doing the integration in
dimension d # 4. Let us determine the same integral in (9.20) but now do
the integration in dimension d = 4 — 2¢, with € — 0, and with dimensional
correction factor p for integration measure, as
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1Pauli, W.; Villars, F. (1949). ?On the Invariant Regularization in Relativistic Quantum
Theory”. Reviews of Modern Physics. 21 (3): 434-444.
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when
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Finally we have
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divergence part finite part

We have extract divergence part of the loop momentum integral out of
the finite part. This will be very useful for the next step for hiding this
divergence part into some physical parameters of the field model, within
the process called renormalization.

9.5 Some useful formula for dimensional regularization
9.5.1 Euclidean integration

Let us determine the integration
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9.5.2 Gamma function
By definition
Tz = / 7=Te=tdt vy T + 1] = 2T[a]
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And Laurent series expansion of the gamma function?
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Exercises 9

9.1. Calculate the tadpole diagram 7, with truncated external legs, in figure
(9.1d).

9.2. Calculate amplitude iMy of box diagram in figure (9.1e).

9.3. Calculate one-loop correction of vertex function in ¢*-interaction model,
with the Lagrangian

1 1
L= 30,00"6 — m*¢* — 6!
-T -ig Y

2https://math.stackexchange.com/questions/1287555/how-to-obtain-the-laurent-
expansion-of-gamma-function-around-z-0



