
10 Scalar Field Renormalization

10.1 Introduction

Renormalization is a process of hiding divergence that occur in loop-order cor-
rections into field model parameters, i.e. mass and coupling constant.

10.2 Minimal subtraction and counter term

Let us denote φ0(x),m2
0, g0 as the bar quantities of model field theory and

φ(x),m2, g are their corresponding renormalized quantities. The renormaliza-
tion process start simply by introducing renormalization factor Zφ of filed op-
erator as

φ0(x) =
√
Zφφ(x) (10.1)

Then the bar field Lagrangian will appear in the form

L0 =
1

2
∂µφ0∂

µφ0 −
1

2
m2

0φ
2
0 −

1

3!
g0φ

3 (10.2)

Zφ−−→
Z2
φ

2
∂µφ∂

µφ− 1

2
m2

0Zφφ
2 − 1

3!
g0Z

3/2
φ φ3 (10.3)

Now let us assign the counter terms Lagrangian δL by writing

Zφ = 1 + δZφ, m
2
0Zφ = m2 + δm2, g0Z

3/2
φ = g + δg (10.4)

Then the bar Lagrangian can be written in terms of thr renormalized Lagrangian
and counter term as

L0 =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

3!
gφ3

+
δZφ

2
∂µφ∂

µφ− 1

2
δm2φ2 − 1

3!
δgφ2 (10.5)

= L+ δL (10.6)

In the renormalization process, all divergences will be factorized into the counter
term. Under subtraction the renormalized Lagrangian will be free from them.
This process is also known in the name of minimal subtraction renormaliztion.

We can assign Feynman rules for field propagator and vertex counter terms,
see figure (10.1), as

• field propagator counter term δ∆(p) = i(δZφp
2 − δm2)

• interaction vertex counterm −iδg
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Figure 10.1: Field propagator and interaction vertex counter term diagrams.

10.3 Renormalization mass

Let us determine the interacting field propagator

∆0(x, y) = 〈0|T [φ0(x)φ0(y)]|0〉 = Zφ〈0|[Tφ(x)φ(y)]|0〉 = Zφ∆(x, y) (10.7)

Taylor expansion of self-energy about the renormalized mass squared m2 as

Σ(p2) = Σ(m2) + (p2 −m2)Σ′(m2) + Σ̃(p2), Σ′ =
dΣ(p2)

dp2
(10.8)

where Σ̃(p2) is higher derivative terms of the expansion and satisfy Σ̃(m2) = 0.
The loop correction of bar field propagator becomes

∆0(p2) =
i

p2 −m2
0 − Σ(m2)− (p2 −m2)Σ′(m2)− Σ̃(p2) + iε

(10.9)

Let us define the renormalized mass squared as

m2 = m2
0 + Σ(m2) 7→ δm2 = −Σ(m2) (10.10)

and let us rewrite
Σ̃(p2) = (1− Σ′(m2))Σ̃(p2)

Then we have from (10.9)

∆0(p) =
i

(p2 −m2 + iε)(1− Σ′(m2)− Σ̃(m2))

' i

p2 −m2 − Σ̃(p2) + iε

(
1− Σ′(m2)

)−1 ≡ Zφ∆(p) (10.11)

7→ Zφ = 1 + δZφ = (1− Σ′(m2))−1 = 1 + Σ′(m2) + ...

δZφ ' Σ′(m2) (10.12)

In case of one-loop self-energy in φ3-interaction within dimensional regular-
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ization of loop momentum integration, we have

−iΣ(p2) = (−ig)2µ4−d
∫

ddk

(2π)d
i

k2 −m2

i

(p− k)2 −m2

=
g2µ4−d

(2π)d

∫ 1

0

dx

∫
ddk

1

[x(k2 −m2) + (1− x)((p− k)2 −m2)]2
(10.13)

k→k+(1−x)p−−−−−−−−−→ g2µ4−d

(2π)d

∫ 1

0

dx

∫
ddk

1

k2 −M2
, M2 = m2 − x(1− x)p2 (10.14)

k0→ik̃4−−−−−→ ig2µ4−d

2(2π)d
Ωd

∫ 1

0

dx

∫ ∞
0

dk̃2
k̃2

[k̃2 +M2]2
(10.15)

=
ig2

2

µ4−d

(2π)d
2πd/2

Γ[d/2]

Γ[d/2]Γ[2− d/2]

Γ[2]

∫ 1

0

dx
1

(M2)d/2−2
(10.16)

d=4−2ε−−−−−→ ig2

16π2
(4πµ2)εΓ[ε]

∫ 1

0

dx
1

M2ε
(10.17)

' ig2

16π2

(
1 + ε ln(4πµ2) + ...

)(1

ε
− γE +O(ε)

)
×
∫ 1

0

dx
(
1− ε lnM2 + ...

)
(10.18)

Finally we have

−iΣ(p2) ' ig2

16π2

(
1

ε
− γE + ln 4πµ2 + ..

)
−
∫ 1

0

dx lnM2(x, p2) + ... (10.19)

10.4 Callan-Symanzik equation

We start from n-point correlation function

G(n)(x1, ..., xn) = 〈0|T [φ(x1)...φ(xn)]|0〉
= Z

−n/2
φ 〈0|T [φ0(x1)...φ0(xn)]|0〉 (10.20)

= Z
−n/2
φ G

(n)
0 (x1, ..., xn) (10.21)

Since tghe bare correlation function G
(n)
0 = G

(n)
0 (φ0, g0,m0) and the renorml-

izaed correlation function G(n) = G(n)(φ,m, g, µ). Then we will have

dG
(n)
0

dµ
= 0 (10.22)

Actually φ = φ(µ), m = m(µ) and g = g(µ), when we make the variation
µ→ µ+ δµ, we will have the following variations

φ→ φ+ δφ = (1 + δη)φ, δη = δφ/phi (10.23)

g → g + δg (10.24)
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From above we will have

0 =
d

dµ

(
Z
n/2
φ G(n)

)
=
∂G(n)

dµ
+
∂G(n)

∂g

dg

dµ
− ndη

dµ
G(n) (10.25)

after we have used the fact that Z
1/2
φ = 1− δη. We can write (10.25) as(

µ
∂

∂µ
+ µ

∂g

∂µ

∂

∂g
− nµ∂η

∂µ

)
G(n)(x1, ..., xn; g, µ) = 0 (10.26)

Next we define

β = µ
∂g

∂µ
, γ = −µ∂η

∂µ
(10.27)

Then (10.26) becomes(
µ
∂

∂µ
+ β

∂

∂g
+ nγ

)
G(n)(x1, ..., xn; g, µ) = 0 (10.28)

This equation is known in the name of Callan-Symanzik equation. Note that
the renormalized correlation function is directly depends of the renormaliza-
tion scale µ, the β function measure how the coupling constant depends of the
renormalization scale and the γ function measure the µ dependent of the field
operator renormalization.

10.5 Beta function

By definition in (10.27)

β(g) = µ
∂g

∂µ
7→
∫ g

g0

dg

β(g)
= ln

µ

µ0
(10.29)

with g(µ0) = g0. Generic behavior of β(g) appears in figure (10.1), and g1, g2
are called fixed points.

Figure 10.2: Behavior of the β(g).

4



a) In case of real massive scalar φ4-interaction we will have

β(g) =
3g2

16π2
+O(g3) (10.30)

We will have from (10.29)

g =
g0

1− 3
16π2 g0 ln µ

µ0

(10.31)

b) In case of the β(g) encounter fixed points g1, g2, i.e., near the fixed point
g1 we may assume

β(g) = a(g1 − g), g0 < g < g1 (10.32)

(10.29) 7→ g1 − g ' µ−a (10.33)

This shows that g
µ→∞−−−−→ g1.

c) In case of β(g) is negative

β(g) = −agn, a > 0, n > 1 (10.34)

(10.29) 7→ g =
g0

[1 + gn−10 (n− 1)a ln µ
µ0

]1/(n−1)
(10.35)

This shows that g
µ→∞−−−−→ 0. This is known as asymptotic freedom behavior,

as appear in QCD.
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