12 Renormalization of QED
12.1 QED counter terms
We start with the bare QED Lagrangian
Lo = o (id — mo)tpo — %F(’)WFOW — eotorho Aoy
Next we define the field renormalizations as
Yo = Zy/* and Al = 732 A

and define the charge renoprmalization as
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7,73/
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From (2.1), we can write

Lo = Zop(id — mo)p — %FWFW — Ziepy' A,
With minimal subtraction scheme, we write
Z1=1+06Z1, Zo =14 02y, Z3 =1+ 6Z3 and Zoymyg = m + dm
Then we have from above
Lo = p(id —m)p — iFWFW - 6157“@&14#
+(8 Z9id — dm)ep — ‘%FWFW — 0Z1eyy Ay,

= L+0L
=L = Lo—0L

where L is the renormalized Lagrangian, and £ is the counter term
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0L = (62210 — Sm)p — =P FM Fyy — 021000 A,

Additional Feynman rules can be assigned for the counter term as
e clectron propagator counter term, figure (12.1a), is (6 Zop — dm)
e photon propagator counter term, figure (12.1b), is —ig"’§ Zoq?

e clectron-photon vertex counterm, figure (12.1c), is —ied Z1y*
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Figure 12.1: QED counter term diagrams.

12.2 Spinor field and mass renormalization
Let us start with the free electron bare propagator

1 Zai

A = = = ZsA 12.9
o(p) oo pom 2 (p) (12.9)
With interaction, Dyson equation tell us that the interacting bare electron propagator is
i
Aor(p) = —— = (12.10)
Zﬁ —mg — E(zﬁ)

where ¥(p) is electron self energy. Do Taylor expansion in the form
S(p) = £(m) + (p — m)¥'(m) + (p — m)*L(m) (12.11)

Let m = mg + X(m), then we have from above

) p=m 7
(p—m)[1 =2 (m) — (p — m)E(m)] (p —m)(1 = (m))
1
T 1-Y(m)

Aor(p) = (12.12)

— ZQA(p) ~ 14+ E’(m) =1402y, 62y = E’(m) (1213)

dm = modZy = me¥' (m) (12.14)

12.3 Vector field renormalization
According to bare photon propagator
—ighv

Dy’ () = — 3= = ZsD"(9) (12.15)

With electronic interaction, we have vacuum polarization written in the form
" (¢*) = ¢"¢°Ti(¢") (12.16)
From Dyson’s equation we will have

—igh 1

Z3 = 1-Ti0) ~ 1+ 11(0) — §Z3 = TI(0) (12.17)

Di (¢%) = 2l —T()] =

where we have determined §Z3 at the pole of photon propagator ¢> = 0.



12.4 Charge renormalization

According to the bare vertex

m=TH (12.18)

We can simplify this be setting Z; = Zs, then we have

e? = Zzek = 0 (12.19)

12.5 Ward identity

Let us determine three-point function on momentum space, with the conserved current J*(x) =

Y(@)yp(w) = duJt =0,

v = [t [ dye v 0T @) e ) o)) (12.20)

We observe that
P (o) = [ o [[atyidn, (o) QI @U@0 (220
ety i fate [ d4ye PR, T @u@)EO)0)  (12:22)

Since
TJ* () (y)(0)] = 0(z° — y°)J*(2)3b(y)$(0) + 0(y” — 2°)¢b(y) J* (2)1(0)

+0(y° — 0)J* ()1 (y)1h(0) — 6(0 — y°)J* ()P (0)1)(y)
+0(2" — 0)(y) J* ()P (0) — (0 — )4 (0)J* ()1 (y)

Then we have
Ouy TIAM (2 () (0)] = T[(Buys T (@) J6(y)B(0)] + TI(a" — ") {I°(2), ()} 0)
~T(5(a"){ I (2), B(0) 1 (y)
Insertion into (12.22), we have
pok) = =i [da [[atye T E 050 < ) (1@, v O))
+i [[ate [ dtyere 05O (@), GO0 (1229
Since
m =iy’ = i) = {9 (2), 7(y) booyo = i{0(2), YT (y) bao—yo = 16D (F - §)
0= 90 = Pt o {1@), () aoyp = {01 @)0(@), ¥(9) haoyo
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= {¢1 (@), ¥ (1) }oo=yo¥(2) = 8% (z — y)io(z)
{J°(2), 9(0)] o= = {07 (@)0(2), T (0)1 ]ao—o = 6P (2) (=)
Insertion into (12.23), we get

puC"(p, k) = —i/d4w€i(p+k)'””<0|T[w(ﬂf)¢(0)]!0>

+i / d*ze=*T (0| T[(0)1p(2)]]0) (12.24)

7

— i O (p, k) = A(p + k) — A(k), with A(p) = (12.25)

pfm

This is called Ward identity, which tell us how the three point function is related to the two
point function in term of the conserve energy-momentum current.
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Figure 12.2: Ward identity of QED vertex.

From figure (12.2), we define the vertex function as

—iq, " (p.q) = Afl(p +q)(—iq.C*(p, Q))Ail(Q)
=A" p+a) - A7) (12.26)

From the vertex renormalization above, we have

142

eZoI'M(q — 0) = ev*, A(p) = p—m (12.27)
—iquZy M = —iZy (p+ ¢ —m) — (i) Zy  (p — m) (12.28)

So that our assumption of this equality comes from Ward identity.

12.6 QED beta function



