1 Eliashberg Theory

Electron-phonon Hamiltonian, without Coulomb interaction, is
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Thermal Green’s function is defined in the form
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where G(k,7) is the normal Green'’s function, while F(k,7) is anomalous
Green’s function, defined by Gorkov. Their time-Fourier transformations are
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We will have form (4)

Glk,ivy)  F(k,ivy,) ) (7)

Gk, ivm) = ( Fk, —ivy) Gk, —ivy)
Free electron Green’s function

~ . k. iv, . 1
Colk ivn) = ( ol 6ZV ) Go(k:,o—wn) ) » Golk, i) = iy — &k (8)

Interacting Green’s function is determined form Dyson-Gorkov equation

G (k,ivy) = Gyt (k,ivy) — S(k, ivy,) (9)

where i(k, ivy) is the electron self-energy, from phonon interaction. Its ex-
pression 1is
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Its generic form should be
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where X(K, iv,) is normal self-energy, and ®(k, iv,) is anomalous self-energy.
In normal system, we extract the imaginary part and real part of the self-
energy in the form
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We will observe that & = ¢; — 19y and &* = —&, a pure imaginary.
Since
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Back insertion (15) and (16) into (9), we get
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Its inversion is
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with a known solution of & = ¢, — pu.

1.2 Eliashberg equations

The electronic spectrum is determined from the poles of é(k’,iyn), that is
from a condition Q(k,iv,) = 0. To know this we have to have solutions of
Z,x and ®. They can be determined from (10) with self-consistent insertion
of G(k,ivy,). After some algebra, we will have
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Note that ® = 0 is always trivial solution of (20), the other solutions are
self-consistent.



